本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
比的基本性质
教学目标:
1.理解比的基本性质。
2.正确应用比的基本性质化简比。
3.培养学生的抽象概括能力,渗透转化的数学思想。
教学重点:理解比的基本性质。
教学难点:正确应用比的基本性质化简比。
教学过程:
一、复习引入
(一)复习商不变的性质
1.谁能直接说出60÷25的商?
2.你是怎么想的?
3.根据是什么?内容是什么?
(二)复习分数的基本性质
约分: 通分:
根据是什么?内容是什么?
(三)求比值
3∶2 8∶4 7∶21 27∶9
5∶25 2∶1 16∶4 24∶5
二、讲授新课
我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?
(一)比的基本性质
1.把练习3中8∶4和2∶1这两个比找出来。
2.教师提问。
这两个比有什么共同点吗?(比值都相等)
这两个比有什么不同点吗?(前项和后项都不同)
我们可以说8∶4和2∶1相等吗?
你是怎么想的?
(1)根据比与除法的关系(商不变的性质)
8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1
(2)根据比与分数的关系(分数基本性质)
8∶4===2=2∶1
3.学生尝试概括比的基本性质
(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
板书课题:比的基本性质
(2)强调:“同时”“相同”“0除外”几个关键词。
(二)化简比
1.练习引入
学校有8个篮球,12个排球,篮球和排球个数的比是多少?
(1)篮球和排球的个数比是8∶12。
(2)篮球和排球的个数比是2∶3。
讨论:篮球和排球的个数比是写成8 :12好,还是写成2∶3好?
2.最简单的整数比
最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比。
3.化简比
例1.把下面各比化成最简单的整数比。
(1)14∶21=(14÷7)∶(21÷7)=2∶3
讨论:化简整数比的方法是什么?
(2)54∶72=3×18∶4×18=3∶4
讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?
(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8
1.25∶2=(1.25×4)∶(2×4)=5∶8(更好)
讨论:怎样把小数比化成最简单的整数比?
4.小结化简比的方法
(1)都化成整数比。
(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止。
(三)区别化简比和求比值
1.练习
比最简单的整数比比值
25∶100 4.2∶1.4
2.讨论:化简比和求比值的区别是什么?
区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数。
例如:25∶100化简比的结果是,读作1比4,求比值的结果是,读作四分之一。
教学后记:
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过学生联想、猜测、观察、类比、对比、类推、验证的过程中总结出了比的基本性质。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。学生学的轻松,教师教的愉快!
俗话说:“兴趣是最好的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网