22.3实际问题与二次函数提升训练
一、选择题
1.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是( )
A.y=20x÷2 B.y=x(20﹣x)
C.y=x(20﹣x)÷2 D.y=x(10﹣x)
2.某商场降价销售一批名牌衬衫,已知所获得利润(元)与降价金额(元)之间的关系是,则获利最多为( )
A.元 B.元 C.元 D.元
3.如图是王阿姨阿晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象.其中曲线段AB是以B为顶点的抛物线一部分,下列说法不正确的是( )
A.25min~50min,王阿姨步行的路程为800m
B.5min~20min,王阿姨步行速度由慢到快
C.线段CD的函数解析式为s=32t+400(25≤t≤50)
D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)
4.如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米 B.10米 C.4米 D.12米
5.如图,已知二次函数y= x2+ x 1的图象与x轴交于A、B两点,与y轴交于点C,连接AC,点P是抛物线上的一个动点,记△APC的面积为S,当S=2时,相应的点P的个数是( )
A.4 个 B.3个 C.2个 D.1个
6.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度单位:与小球运动时间单位:之间的函数关系如图所示,下列结论:
①小球在空中经过的路程是
②小球抛出后,速度越来越快
③小球抛出时速度为0
④小球的高度时,
其中正确的是( )
A.①②③ B.①② C.②③④ D.②③
7.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为,两侧距地面高处各有一盏灯,两灯间的水平距离为,则这个门洞内部顶端离地面的距离为( )
A. B.8 C. D.
8.某店销售一款运动服,每件进价100元,若按每件128元出售,每天可卖出100件,根据市场调查结果,若每件降价1元,则每天可多卖出5件,要使每天获得的利润最大,则每件需要降价( )
A.3元 B.4元 C.5元 D.8元
9.如图,AB=8,C是线段AB上一动点(不与点A,B重合),以AC为边作正方形ACMN,以BC为边作菱形BCDE(正方形ACMN与菱形BCDE在AB的同侧),连接MD,当∠E=60°时,△CDM面积的最大值为( )
A.8 B.6 C. D.4
10.如图,正方形 边长为4个单位,两动点 、 分别从点 、 处,以1单位/ 、2单位/ 的速度逆时针沿边移动.记移动的时间为 , 面积为 (平方单位),当点 移动一周又回到点 终止,同时 点也停止运动,则 与 的函数关系图象为( )
A. B.
C. D.
二、填空题
11.发射一枚炮弹,经 秒后的高度为 米,且时间与高度的关系为 .若此炮弹在第7秒与第15秒时的高度相等,则第 秒时炮弹位置达到最高.
12.如图,一座抛物线型拱桥,桥下水面宽度是4m时,拱高为2m,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过 m.
13.如图,用长为的篱笆,一边利用墙(墙足够长)围成一个长方形花园,设花园的宽为,围成的花圃面积为,则y关于x的函数表达式为 .
14.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为 处达到最高,高度为 ,水柱落地处离池中心距离为 ,则水管的长度 是 .
15.某超市销售一种饮料,每瓶进价为9元.经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,日均销售量(瓶)与每瓶销售价(元)之间满足函数关系式.当销售价格定为每瓶 元时,所得日均毛利润最大(每瓶毛利润=每瓶售价-每瓶进价).
16.中国跳水队在第三十二届夏季奥林匹克运动会上获得金银枚奖牌的好成绩.某跳水运动员从起跳至入水的运动路线可以看作是抛物线的一部分,如图所示,该运动员起点距离水面,运动过程中的最高点距池边,入水点距池边,根据上述信息,可推断出点距离水面
三、解答题
17.如图,一辆宽为2米的货车要通过跨度为8米,拱高为4米的单行抛物线隧道(从正中通过),抛物线满足表达式y=﹣ x2+4.保证安全,车顶离隧道的顶部至少要有0.5米的距离,求货车的限高应是多少.
18.掷实心球是中考体育考试项目之一.如图1是一名男生掷实心球情境,实心球行进路线是一条抛物线,行进高度与水平距离之间的函数关系如图2所示.掷出时,起点处高度为.当水平距离为时,实心球行进至最高点处.
(1)求y关于x的函数表达式;
(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.
19.某商场购进一批单价为40元的商品,若按每件50元销售,平均每天可销售90件.市场调查发现,这种商品的销售单价每提高1元,平均每天少销售3件.将销售单价定为多少,才能使每天所获销售利润W最大?最大利润W是多少?
20.如图,学校要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙(外墙足够长),其余三边用竹篱笆围成.其中(即长不小于宽),设矩形的宽的长为x米,矩形面积为y平方米.
(1)若矩形的面积150平方米,求宽的长;
(2)求y与x的函数关系式,并写出自变量x的取值范围;
(3)矩形地块的宽为多少时,矩形面积最大,并求出最大面积.
21.甲、乙两公司同时销售一款进价为40元/千克的产品.图①中折线ABC表示甲公司销售价y1(元/千克)与销售量x(千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y2(元)与销售量x(千克)之间的函数关系.
(1)分别求出图①中线段AB、图②中抛物线所表示的函数表达式;
(2)当该产品销售量为多少千克时,甲、乙两公司获得的利润的差最大?最大值为多少?