【中考真题·高分必刷题】专题06 分式方程(组)及其应用 三年中考真题分类汇编(基础版)(原卷+解析版)

文档属性

名称 【中考真题·高分必刷题】专题06 分式方程(组)及其应用 三年中考真题分类汇编(基础版)(原卷+解析版)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-12-26 18:39:46

文档简介

中小学教育资源及组卷应用平台
【中考真题 高分必刷题】3年中考数学真题分类汇编(基础版)
专题06 分式方程(组)及其应用
本专题汇编2022~2024年三年中考真题,把3年中考中常考题型汇编成每个小专题进行分类突破,对于考生来说,最具有针对性的题型就是中考真题,让考生熟悉中考的考点以及重难点。
1.(2024·海南·中考真题)分式方程的解是( )
A. B. C. D.
【答案】A
【详解】解:
去分得:,
解得,
检验,当时,,
∴是原方程的解
2.(2024·江苏无锡·中考真题)分式方程的解是( )
A. B. C. D.
【答案】A
【详解】解:,


检验,当时,,
∴是原分式方程的解,
3.(2024·江苏徐州·中考真题)分式方程的解为 .
【答案】
【详解】解:原方程去分母得:,即
解得:,
检验:当时,,
故原方程的解为,故答案为:.
4.(2024·辽宁·中考真题)方程的解为 .
【答案】
【详解】解:,,解得:,
经检验:是原方程的解,
∴原方程的解为:,
故答案为:.
5.(2024·北京·中考真题)方程的解为 .
【答案】
【详解】解:,,
解得:,
经检验:是原方程的解,
所以,原方程的解为,
故答案为:.
6.(2023·辽宁大连·中考真题)解方程去分母,两边同乘后的式子为( )
A. B.
C. D.
【答案】B
【详解】解:分式方程的两侧同乘得:.
7.(2024·山东济宁·中考真题)解分式方程时,去分母变形正确的是( )
A. B.
C. D.
【答案】A
【详解】解:方程两边同乘,得,
整理可得:
8.(2023·湖南·中考真题)将关于x的分式方程去分母可得( )
A. B. C. D.
【答案】A
【详解】解:∵,
去分母得:,
整理得:
9.(2022·湖南永州·中考真题)解分式方程去分母时,方程两边同乘的最简公分母是 .
【答案】
【详解】解:分式方程的两个分母分别为x,(x+1),
∴最简公分母为:x(x+1),
故答案为:x(x+1).
10.(2024·四川遂宁·中考真题)分式方程的解为正数,则的取值范围( )
A. B.且
C. D.且
【答案】B
【详解】解:方程两边同时乘以得,,
解得,∵分式方程的解为正数,
∴,∴,
又∵,即,
∴,
∴的取值范围为且
11.(2024·黑龙江齐齐哈尔·中考真题)如果关于的分式方程的解是负数,那么实数的取值范围是( )
A.且 B. C. D.且
【答案】A
【详解】解:方程两边同时乘以得,,
解得,
∵分式方程的解是负数,∴,∴,
又∵,∴,∴,∴,
∴且
12.(2022·四川德阳·中考真题)如果关于的方程的解是正数,那么的取值范围是( )
A. B.且 C. D.且
【答案】B
【详解】解:∵有正数解,
∴,则,,
去分母,得,,
移项合并,得,,
∵方程的解是正数,∴,解得:且
13.(2023·黑龙江牡丹江·中考真题)若分式方程的解为负数,则a的取值范围是( )
A.且 B.且
C.且 D.且
【答案】D
【详解】解:去分母得:,解得:,
∵分式方程的解是负数,
∴,,即,
解得:且
14.(2023·山东日照·中考真题)若关于的方程解为正数,则的取值范围是( )
A. B. C.且 D.且
【答案】D
【详解】解:
∵方程的解为正数,且分母不等于0
∴,
∴,且
15.(2023·黑龙江·中考真题)已知关于x的分式方程的解是非负数,则的取值范围是( )
A. B. C.且 D.且
【答案】C
【详解】解:分式方程去分母得:,解得:,
∵分式方程的解是非负数,∴,且,
∴且
16.(2022·重庆·中考真题)关于x的分式方程的解为正数,且关于y的不等式组的解集为,则所有满足条件的整数a的值之和是( )
A.13 B.15 C.18 D.20
【答案】A
【详解】由分式方程的解为整数可得:
解得:又题意得:且
∴且,由得:
由得:
∵解集为∴
解得:
综上可知a的整数解有:3,4,6
它们的和为:13
17.(2022·重庆·中考真题)若关于的一元一次不等式组的解集为,且关于的分式方程的解是负整数,则所有满足条件的整数的值之和是( )
A.-26 B.-24 C.-15 D.-13
【答案】D
【详解】∵ ,
解①得解集为,解②得解集为,
∵ 不等式组的解集为,∴,解得a>-11,
∵ 的解是y=,且y≠-1,的解是负整数,∴a<1且a≠-2,
∴-11<a<1且a≠-2,故a=-8或a=-5,
故满足条件的整数的值之和是-8-5=-13,
18.(2024·重庆·中考真题)若关于的一元一次不等式组的解集为,且关于的分式方程的解均为负整数,则所有满足条件的整数的值之和是 .
【答案】
【详解】解:
解不等式①得:,
解不等式②得: ,
∵不等式组的解集为,∴,∴;
解分式方程得,
∵关于的分式方程的解均为负整数,
∴且是整数且,
∴且且a是偶数,
∴且且a是偶数,
∴满足题意的a的值可以为4或8,
∴所有满足条件的整数a的值之和是.
19.(2024·重庆·中考真题)若关于的不等式组至少有2个整数解,且关于的分式方程的解为非负整数,则所有满足条件的整数的值之和为 .
【答案】16
【详解】解:,
解①得:,
解②得:,
关于的一元一次不等式组至少有两个整数解,

解得,
解方程,得,
关于的分式方程的解为非负整数,
且,是偶数,
解得且,是偶数,
且,是偶数,
则所有满足条件的整数的值之和是,
20.(2023·重庆·中考真题)若关于x的不等式组的解集为,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为 .
【答案】13
【详解】解:,
解不等式①得:,
解不等式②得:,
∵关于的不等式组的解集为,
,解得,
方程可化为,
解得,
关于的分式方程的解为正数,
且,
解得且,
且,
则所有满足条件的整数的值之和为,
故答案为:13.
21.(2022·四川遂宁·中考真题)若关于x的方程无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
【答案】D
【详解】方程两边同乘,得,
整理得,
原方程无解,
当时,;
当时,或,此时,,
解得或,
当时,无解;
当时,,解得;
综上,m的值为0或4;
22(2022·黑龙江牡丹江·中考真题)若关于x的方程无解,则m的值为( )
A.1 B.1或3 C.1或2 D.2或3
【答案】B
【详解】解:将方程化成整式方程为,即,
因为关于的方程无解,
所以分以下两种情况:
①整式方程无解,
则,解得;
②关于的方程有增根,
则,即,
将代入得:,解得;
综上,的值为1或3
23.(2024·黑龙江大兴安岭地·中考真题)已知关于x的分式方程无解,则k的值为( )
A.或 B. C.或 D.
【答案】A
【详解】解:去分母得,,
整理得,,
当时,方程无解,
当时,令,
解得,
所以关于x的分式方程无解时,或.
24.(2023·湖南永州·中考真题)若关于x的分式方程(m为常数)有增根,则增根是 .
【答案】
【详解】∵关于x的分式方程(m为常数)有增根,
∴,
解得,
故答案为:.
25.(2024·四川达州·中考真题)若关于的方程无解,则的值为 .
【答案】或2
【详解】解:
去分母得:,解得:,
∵关于的方程无解,
∴当或时,分式方程无解,
解得:或(经检验是原方程的解),
即或,无解.
故答案为:或2.
26.(2024·陕西·中考真题)解方程:.
【答案】
【详解】解:,
去分母得:,
去括号得:,
移项,合并同类项得:,
检验:把代入得:,
∴是原方程的解.
27.(2024·福建·中考真题)解方程:.
【答案】.
【详解】解:,
方程两边都乘,得.
去括号得:,
解得.
经检验,是原方程的根.
28.(2023·西藏·中考真题)解分式方程:.
【答案】
【详解】

经检验,是原方程的根,
故原方程的解为:.
29.(2023·山西·中考真题)解方程:.
【答案】
【详解】解:原方程可化为.
方程两边同乘,得.
解得.
检验:当时,.
∴原方程的解是.
30.(2022·青海西宁·中考真题)解方程:.
【答案】
【详解】解:方程两边同乘,得,
解得,
检验:当时,,
所以,原分式方程的解为.
31.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km,一部分学生乘慢车先行,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km,求慢车的速度?设慢车的速度为,则可列方程为( )
A. B.
C. D.
【答案】A
【详解】解:设慢车的速度为,则快车的速度为,根据题意可得:

31.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )
A. B.
C. D.
【答案】C
【详解】解:设B种绿植单价是x元,则A种绿植单价是元,根据题意得:
32.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )
A. B.
C. D.
【答案】C
【详解】解:由题意可得,
33.(2024·新疆·中考真题)某校九年级学生去距学校的科技馆研学,一部分学生乘甲车先出发,后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为,根据题意可列方程( )
A. B. C. D.
【答案】D
【详解】解:,设甲车的速度为,根据题意可列方程:
34.(2023·广东广州·中考真题)随着城际交通的快速发展,某次动车平均提速60,动车提速后行驶480与提速前行驶360所用的时间相同.设动车提速后的平均速度为x,则下列方程正确的是( )
A. B. C. D.
【答案】B
【详解】解:根据题意,得.
35.(2024·内蒙古赤峰·中考真题)一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.
(1)求甲、乙两队平均每天修复公路分别是多少千米;
(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?
【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;
(2)15天的工期,两队最多能修复公路千米.
【详解】(1)解:设甲队平均每天修复公路千米,则乙队平均每天修复公路千米,
由题意得,
解得,
经检验,是原方程的解,且符合题意,

答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;
(2)解:设甲队的工作时间为天,则乙队的工作时间为天,15天的工期,两队能修复公路千米,
由题意得,

解得,
∵,
∴随的增加而减少,
∴当时,有最大值,最大值为,
答:15天的工期,两队最多能修复公路千米.
36.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,结果提前15天完成铺设任务.
(1)求原计划与实际每天铺设管道各多少米?
(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?
【答案】(1)原计划与实际每天铺设管道各为40米,50米
(2)该公司原计划最多应安排8名工人施工
【详解】(1)解:设原计划每天铺设管道x米,则实际施工每天铺设管道米,
根据题意得:,
解得:,经检验是分式方程的解,且符合题意,
∴,
则原计划与实际每天铺设管道各为40米,50米;
(2)解:设该公司原计划应安排y名工人施工,(天),
根据题意得:,
解得:,
∴不等式的最大整数解为8,
则该公司原计划最多应安排8名工人施工.
37.(2023·辽宁丹东·中考真题)“畅通交通,扮靓城市”,某市在道路提升改造中,将一座长度为36米的桥梁进行重新改造.为了尽快通车,某施工队在实际施工时,每天工作效率比原计划提高了,结果提前2天成功地完成了大桥的改造任务,那么该施工队原计划每天改造多少米
【答案】施工队原计划每天改造6米.
【详解】解:设施工队原计划每天改造米,
根据题意得:,
解得,
经检验,是原方程的解,
答:施工队原计划每天改造6米.
38.(2023·四川德阳·中考真题)2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积平方公里,计划2025年基本建成.若甲、乙两个工程队计划参与修建“特色小镇”中的某项工程,已知由甲单独施工需要18个月完成任务,若由乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元,向乙工程队支付施工费用5万元.
(1)乙队单独完工需要几个月才能完成任务?
(2)为保证该工程在两年内完工,且尽可能的减少成本,承建公司决定让甲、乙两个工程队同时施工,并将该工程分成两部分,甲队完成其中一部分工程用了a个月,乙队完成另一部分工程用了b个月,已知甲队施工时间不超过6个月,乙队施工时间不超过24个月,且a,b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?
【答案】(1)乙队单独完工需要27个月才能完成任务.
(2)甲乙两队实际施工的时间安排有3种方式,安排甲工作2个月,乙工作24个月,费用最低为万元.
【详解】(1)解:设乙单独完成需要个月,则
,解得:,
经检验是原方程的解且符合题意;
答:乙队单独完工需要27个月才能完成任务.
(2)由题意可得:,
∴,∴,
∵,,
∴,解得:,
∵都为正整数,
∴为3的倍数,
∴或或,
∴甲乙两队实际施工的时间安排有3种方式,
方案①:安排甲工作6个月,乙工作18个月,费用为:(万元),
方案②:安排甲工作4个月,乙工作21个月,费用为:(万元),
方案③:安排甲工作2个月,乙工作24个月,费用为:(万元),
∴安排甲工作2个月,乙工作24个月,费用最低为万元.
39.(2024·山东日照·中考真题)【问题背景】2024年4月23日是第18个“世界读书日”,为给师生提供更加良好的阅读环境,学校决定扩大图书馆面积,增加藏书数量,现需购进20个书架用于摆放书籍.
【素材呈现】
素材一:有两种书架可供选择,A种书架的单价比B种书架单价高;
素材二:用18000元购买A种书架的数量比用9000元购买B种书架的数量多6个;
素材三:A种书架数量不少于B种书架数量的.
【问题解决】
(1)问题一:求出两种书架的单价;
(2)问题二:设购买a个A种书架,购买总费用为w元,求w与a的函数关系式,并求出费用最少时的购买方案;
(3)问题三:实际购买时,商家调整了书架价格,A种书架每个降价m元,B种书架每个涨价元,按问题二的购买方案需花费21120元,求m的值.
【答案】(1)1200元;1000元
(2);购买A种书架8个,B种书架12个(3)120
【详解】(1)解:设B种书架的单价为x元,则A种书架的单价为元.
由题意得,解得,
经检验,是分式方程的解,且符合题意,

答:两种书架的单价分别为1200元,1000元.
(2)解:购买a个A种书架时,购买总费用,
即,
由题意得,a应满足:,解得.

∴w随着a的增大而增大,
当时,w的值最小,最小值为,
费用最少时购买A种书架8个,B种书架12个.
(3)解:由题意得

解得.
40.(2023·内蒙古通辽·中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨
(2)当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.
【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,
由题意可得:,
解得:
经检验,是分式方程的解
每台A型机器每天搬运吨
答:每台A型机器,B型机器每天分别搬运货物90吨和100吨
(2)解:设公司计划采购A型机器m台,则采购B型机器台
由题意可得:,
解得:,
公司采购金额:

∴w随m的增大而减小
∴当时,公司采购金额w有最小值,即,
∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.
41.(2023·山东·中考真题)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
(1)A,B两种型号充电桩的单价各是多少?
(2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
【答案】(1)A型充电桩的单价为万元,B型充电桩的单价为万元
(2)共有三种方案:方案一:购买A型充电桩个,购买B型充电桩个;方案二:购买A型充电桩个,购买B型充电桩个;方案三:购买A型充电桩个,购买B型充电桩个;方案三总费用最少.
【详解】(1)解:设B型充电桩的单价为万元,则A型充电桩的单价为万元,由题意可得:
,
解得,
经检验:是原分式方程的解,

答:A型充电桩的单价为万元,B型充电桩的单价为万元;
(2)解:设购买A型充电桩个,则购买B型充电桩个,由题意可得:
,解得,
∵须为非负整数,
∴可取,,,
∴共有三种方案:
方案一:购买A型充电桩个,购买B型充电桩个,购买费用为(万元);
方案二:购买A型充电桩个,购买B型充电桩个,购买费用为(万元);
方案三:购买A型充电桩个,购买B型充电桩个,购买费用为(万元),

∴方案三总费用最少.
42.(2023·黑龙江·中考真题)2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.
(1)求A款文化衫和B款文化衫每件各多少元?
(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?
(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.
【答案】(1)A款文化衫每件50元,则B款文化衫每件40元,(2)一共有六种购买方案(3)
【详解】(1)解:设A款文化衫每件x元,则B款文化衫每件元,
由题意得,,
解得,
检验,当时,,
∴是原方程的解,
∴,
∴A款文化衫每件50元,则B款文化衫每件40元,
答:A款文化衫每件50元,则B款文化衫每件40元;
(2)解:设购买A款文化衫a件,则购买B款文化衫件,
由题意得,,
解得,
∵a是正整数,
∴a的取值可以为275,276,277,278,279,280,
∴一共有六种购买方案;
(3)解:设购买资金为W元,购买A款文化衫a件,则购买B款文化衫件,
由题意得,

∵(2)中的所有购买方案所需资金恰好相同,
∴W的取值与a的值无关,
∴,
∴.
43.(2023·黑龙江牡丹江·中考真题)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:
(1)这两种家电每件的进价分别是多少元?
(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?
(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.
【答案】(1)A种家电每件的进价为500元,B种家电每件的进价为600元
(2)共有三种购买方案,方案一:购进A种家电65件,B种家电35件,方案二:购进A种家电66件,B种家电34件,方案三:购进A种家电67件,B种家电33件
(3)这10件家电中B种家电的件数4件
【详解】(1)设A种家电每件进价为x元,B种家电每件进价为元.
根据题意,得
. 解得. 经检验是原分式方程的解.

答:A种家电每件的进价为500元,B种家电每件的进价为600元;
(2)设购进A种家电a件,购进B种家电件.
根据题意,得. 解得.
,.
为正整数,,则,
共有三种购买方案,
方案一:购进A种家电65件,B种家电35件,
方案二:购进A种家电66件,B种家电34件,
方案三:购进A种家电67件,B种家电33件;
(3)解:设A种家电拿出件,则B种家电拿出件,
根据(1)和(2)及题意,当购进A种家电65件,B种家电35件时,得:

整理得:,
解得:,不符合实际;
当购进A种家电66件,B种家电34件时,得:

整理得:,
解得:,不符合实际;
当购进A种家电67件,B种家电33件时,得:

整理得:,
解得:,符合实际;则B种家电拿出件.
44.(2023·湖北荆州·中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.
(1)求,饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,
①求的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
【答案】(1)种饰品每件进价为10元,B种饰品每件进价为9元;
(2)①且为整数,②当采购种饰品210件,B种饰品390件时,商铺获利最大,最大利润为3630元.
【详解】(1)(1)设种饰品每件的进价为元,则B种饰品每件的进价为元.
由题意得:,解得:,
经检验,是所列方程的根,且符合题意.
种饰品每件进价为10元,B种饰品每件进价为9元.
(2)①根据题意得:,
解得:且为整数;
②设采购种饰品件时的总利润为元.
当时,,
即,

随的增大而减小.
当时,有最大值3480.
当时,
整理得:,

随的增大而增大.
当时,有最大值3630.

的最大值为3630,此时.
即当采购种饰品210件,B种饰品390件时,商铺获利最大,最大利润为3630元.
45.(2024·四川眉山·中考真题)眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用元购进的款文创产品和用元购进的款文创产品数量相同.每件款文创产品进价比款文创产品进价多元.
(1)求,两款文创产品每件的进价各是多少元?
(2)已知,文创产品每件售价为元,款文创产品每件售价为元,根据市场需求,商店计划再用不超过元的总费用购进这两款文创产品共件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?
【答案】(1)款文创产品每件的进价元,文创产品每件的进价是元;
(2)购进款文创产品件,购进款文创产品件,才能使销售完后获得的利润最大,最大利润是元.
【详解】(1)解:设款文创产品每件的进价元,则文创产品每件的进价是元,
根据题意得,,
解得,
经检验,是原分式方程的解,

答:款文创产品每件的进价元,则文创产品每件的进价是元;
(2)解:设购进款文创产品件,则购进款文创产品件,总利润为,
根据题意得,,
解得,
又由题意得,,
,随的增大而增大,
当时,利润最大,
∴购进款文创产品件,购进款文创产品件,获得的利润最大,,
答:购进款文创产品件,购进款文创产品件,才能使销售完后获得的利润最大,最大利润是元.
46.(2023·四川泸州·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
(1)该商场节后每千克A粽子的进价是多少元?
(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
【答案】(1)节后每千克A粽子的进价为10元
(2)节前购进300千克A粽子获得利润最大,最大利润为3000元
【详解】(1)解:设节后每千克A粽子的进价为x元,则每千克A粽子节前的进价为元,根据题意得:
,解得:,,
经检验,都是原方程的解,但不符合实际舍去,
答:节后每千克A粽子的进价为10元.
(2)解:设该商场节前购进m千克A粽子,则节后购进千克A粽子,获得的利润为w元,根据题意得:

∵,∴,
∵,
∴w随m的增大而增大,
∴当时,w取最大值,且最大值为:,
答:节前购进300千克A粽子获得利润最大,最大利润为3000元.
47.(2023·辽宁营口·中考真题)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.
(1)求今年这款消毒洗衣液每瓶进价是多少元;
(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?
【答案】(1)今年这款消毒洗衣液每瓶进价是24元;
(2)当这款消毒洗衣液每瓶的售价定为33元时,这款洗衣液每周的销售利润最大,最大利润是8100元.
【详解】(1)解:设今年这款消毒洗衣液每瓶进价是x元,则去年这款消毒洗衣液每瓶进价是元,
根据题意可得:,解得:,
经检验:是方程的解,
元,
答:今年这款消毒洗衣液每瓶进价是24元.
(2)解:设这款消毒洗衣液每瓶的售价定为m元时,这款洗衣液每周的销售利润w最大,
根据题意得出:,
整理得:,
根据二次函数的性质得出:当时,利润最大,
最大利润为:,
答:当这款消毒洗衣液每瓶的售价定为33元时,这款洗衣液每周的销售利润最大,最大利润是8100元.
48.(2023·四川遂宁·中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.
(1)甲、乙两种粽子每个的进价分别是多少元?
(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为w元.
①求w与m的函数关系式,并求出m的取值范围;
②超市应如何进货才能获得最大利润,最大利润是多少元?
【答案】(1)甲粽子每个的进价为10元,则乙粽子每个的进价为12元;
(2)①w与m的函数关系式为;②购进甲粽子134个,乙粽子66个才能获得最大利润,最大利润为466元.
【详解】(1)解:设甲粽子每个的进价为x元,则乙粽子每个的进价为元,
由题意得:,
解得:,
经检验:是原方程的解,且符合题意,
则,
答:甲粽子每个的进价为10元,则乙粽子每个的进价为12元;
(2)解:①设购进甲粽子m个,则乙粽子个,利润为w元,
由题意得:,
∵甲种粽子的个数不低于乙种粽子个数的2倍,
∴,
解得:,
∴w与m的函数关系式为;
②∵,则w随m的增大而减小,,即m的最小整数为134,
∴当时,w最大,最大值,
则,
答:购进甲粽子134个,乙粽子66个才能获得最大利润,最大利润为466元.
49.(2022·内蒙古鄂尔多斯·中考真题)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.
(1)求第二批每个挂件的进价;
(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?
【答案】(1)第二批每个挂件的进价为40元
(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元
【详解】(1)设第二批每个挂件的进价为x元,则第一批每个挂件的进价为1.1x元,
根据题意可得,

解得x=40.
经检验,x=40是原分式方程的解,且符合实际意义,
∴1.1x=44.
∴第二批每个挂件的进价为40元.
(2)设每个售价定为y元,每周所获利润为w元,
根据题意可知,w=(y﹣40)[40+10(60﹣y)]=﹣10+1440,
∵﹣10>0,
∴当x≥52时,y随x的增大而减小,
∵40+10(60﹣y)≤90,
∴y≥55,
∴当y=55时,w取最大,此时w=﹣10+1440=1350.
∴当每个挂件售价定为55元时,每周可获得最大利润,最大利润是1350元.中小学教育资源及组卷应用平台
【中考真题 高分必刷题】3年中考数学真题分类汇编(基础版)
专题06 分式方程(组)及其应用
本专题汇编2022~2024年三年中考真题,把3年中考中常考题型汇编成每个小专题进行分类突破,对于考生来说,最具有针对性的题型就是中考真题,让考生熟悉中考的考点以及重难点。
1.(2024·海南·中考真题)分式方程的解是( )
A. B. C. D.
2.(2024·江苏无锡·中考真题)分式方程的解是( )
A. B. C. D.
3.(2024·江苏徐州·中考真题)分式方程的解为 .
4.(2024·辽宁·中考真题)方程的解为 .
5.(2024·北京·中考真题)方程的解为 .
6.(2023·辽宁大连·中考真题)解方程去分母,两边同乘后的式子为( )
A. B.
C. D.
7.(2024·山东济宁·中考真题)解分式方程时,去分母变形正确的是( )
A. B.
C. D.
8.(2023·湖南·中考真题)将关于x的分式方程去分母可得( )
A. B. C. D.
9.(2022·湖南永州·中考真题)解分式方程去分母时,方程两边同乘的最简公分母是 .
10.(2024·四川遂宁·中考真题)分式方程的解为正数,则的取值范围( )
A. B.且
C. D.且
11.(2024·黑龙江齐齐哈尔·中考真题)如果关于的分式方程的解是负数,那么实数的取值范围是( )
A.且 B. C. D.且
12.(2022·四川德阳·中考真题)如果关于的方程的解是正数,那么的取值范围是( )
A. B.且 C. D.且
13.(2023·黑龙江牡丹江·中考真题)若分式方程的解为负数,则a的取值范围是( )
A.且 B.且
C.且 D.且
14.(2023·山东日照·中考真题)若关于的方程解为正数,则的取值范围是( )
A. B. C.且 D.且
15.(2023·黑龙江·中考真题)已知关于x的分式方程的解是非负数,则的取值范围是( )
A. B. C.且 D.且
16.(2022·重庆·中考真题)关于x的分式方程的解为正数,且关于y的不等式组的解集为,则所有满足条件的整数a的值之和是( )
A.13 B.15 C.18 D.20
17.(2022·重庆·中考真题)若关于的一元一次不等式组的解集为,且关于的分式方程的解是负整数,则所有满足条件的整数的值之和是( )
A.-26 B.-24 C.-15 D.-13
18.(2024·重庆·中考真题)若关于的一元一次不等式组的解集为,且关于的分式方程的解均为负整数,则所有满足条件的整数的值之和是 .
19.(2024·重庆·中考真题)若关于的不等式组至少有2个整数解,且关于的分式方程的解为非负整数,则所有满足条件的整数的值之和为 .
20.(2023·重庆·中考真题)若关于x的不等式组的解集为,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为 .
21.(2022·四川遂宁·中考真题)若关于x的方程无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
22(2022·黑龙江牡丹江·中考真题)若关于x的方程无解,则m的值为( )
A.1 B.1或3 C.1或2 D.2或3
23.(2024·黑龙江大兴安岭地·中考真题)已知关于x的分式方程无解,则k的值为( )
A.或 B. C.或 D.
24.(2023·湖南永州·中考真题)若关于x的分式方程(m为常数)有增根,则增根是 .
25.(2024·四川达州·中考真题)若关于的方程无解,则的值为 .
26.(2024·陕西·中考真题)解方程:.
27.(2024·福建·中考真题)解方程:.
28.(2023·西藏·中考真题)解分式方程:.
29.(2023·山西·中考真题)解方程:.
30.(2022·青海西宁·中考真题)解方程:.
31.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km,一部分学生乘慢车先行,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km,求慢车的速度?设慢车的速度为,则可列方程为( )
A. B.
C. D.
31.(2024·四川广元·中考真题)我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A、B两种绿植,已知A种绿植单价是B种绿植单价的3倍,用6750元购买的A种绿植比用3000元购买的B种绿植少50株.设B种绿植单价是x元,则可列方程是( )
A. B.
C. D.
32.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是元,所得方程正确的是( )
A. B.
C. D.
33.(2024·新疆·中考真题)某校九年级学生去距学校的科技馆研学,一部分学生乘甲车先出发,后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为,根据题意可列方程( )
A. B. C. D.
34.(2023·广东广州·中考真题)随着城际交通的快速发展,某次动车平均提速60,动车提速后行驶480与提速前行驶360所用的时间相同.设动车提速后的平均速度为x,则下列方程正确的是( )
A. B. C. D.
35.(2024·内蒙古赤峰·中考真题)一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.
(1)求甲、乙两队平均每天修复公路分别是多少千米;
(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?
36.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,结果提前15天完成铺设任务.
(1)求原计划与实际每天铺设管道各多少米?
(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?
37.(2023·辽宁丹东·中考真题)“畅通交通,扮靓城市”,某市在道路提升改造中,将一座长度为36米的桥梁进行重新改造.为了尽快通车,某施工队在实际施工时,每天工作效率比原计划提高了,结果提前2天成功地完成了大桥的改造任务,那么该施工队原计划每天改造多少米
38.(2023·四川德阳·中考真题)2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积平方公里,计划2025年基本建成.若甲、乙两个工程队计划参与修建“特色小镇”中的某项工程,已知由甲单独施工需要18个月完成任务,若由乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元,向乙工程队支付施工费用5万元.
(1)乙队单独完工需要几个月才能完成任务?
(2)为保证该工程在两年内完工,且尽可能的减少成本,承建公司决定让甲、乙两个工程队同时施工,并将该工程分成两部分,甲队完成其中一部分工程用了a个月,乙队完成另一部分工程用了b个月,已知甲队施工时间不超过6个月,乙队施工时间不超过24个月,且a,b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?
39.(2024·山东日照·中考真题)【问题背景】2024年4月23日是第18个“世界读书日”,为给师生提供更加良好的阅读环境,学校决定扩大图书馆面积,增加藏书数量,现需购进20个书架用于摆放书籍.
【素材呈现】
素材一:有两种书架可供选择,A种书架的单价比B种书架单价高;
素材二:用18000元购买A种书架的数量比用9000元购买B种书架的数量多6个;
素材三:A种书架数量不少于B种书架数量的.
【问题解决】
(1)问题一:求出两种书架的单价;
(2)问题二:设购买a个A种书架,购买总费用为w元,求w与a的函数关系式,并求出费用最少时的购买方案;
(3)问题三:实际购买时,商家调整了书架价格,A种书架每个降价m元,B种书架每个涨价元,按问题二的购买方案需花费21120元,求m的值.
40.(2023·内蒙古通辽·中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
41.(2023·山东·中考真题)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
(1)A,B两种型号充电桩的单价各是多少?
(2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
42.(2023·黑龙江·中考真题)2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.
(1)求A款文化衫和B款文化衫每件各多少元?
(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?
(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.
43.(2023·黑龙江牡丹江·中考真题)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:
(1)这两种家电每件的进价分别是多少元?
(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?
(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.
44.(2023·湖北荆州·中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.
(1)求,饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,
①求的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
45.(2024·四川眉山·中考真题)眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用元购进的款文创产品和用元购进的款文创产品数量相同.每件款文创产品进价比款文创产品进价多元.
(1)求,两款文创产品每件的进价各是多少元?
(2)已知,文创产品每件售价为元,款文创产品每件售价为元,根据市场需求,商店计划再用不超过元的总费用购进这两款文创产品共件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?
46.(2023·四川泸州·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
(1)该商场节后每千克A粽子的进价是多少元?
(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
47.(2023·辽宁营口·中考真题)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.
(1)求今年这款消毒洗衣液每瓶进价是多少元;
(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?
48.(2023·四川遂宁·中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.
(1)甲、乙两种粽子每个的进价分别是多少元?
(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为w元.
①求w与m的函数关系式,并求出m的取值范围;
②超市应如何进货才能获得最大利润,最大利润是多少元?
49.(2022·内蒙古鄂尔多斯·中考真题)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.
(1)求第二批每个挂件的进价;
(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?
同课章节目录