第一课时 1.1.1 命题及其关系(一)

文档属性

名称 第一课时 1.1.1 命题及其关系(一)
格式 rar
文件大小 28.2KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2009-11-12 07:28:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第一课时 1.1.1 命题及其关系(一)
教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.
教学重点:命题的改写.
教学难点:命题概念的理解.
教学过程:
一、复习准备:
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3;
(3)3吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子.
二、讲授新课:
1. 教学命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.
上述6个语句中,(1)(2)(4)(5)(6)是命题.
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition).
上述5个命题中,(2)是假命题,其它4个都是真命题.
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数是素数,则是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5);
(6)平面内不相交的两条直线一定平行;
(7)明天下雨.
(学生自练个别回答教师点评)
④探究:学生自我举出一些命题,并判断它们的真假.
2. 将一个命题改写成“若,则”的形式:
①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.
②试将例1中的命题(6)改写成“若,则”的形式.
③例2:将下列命题改写成“若,则”的形式.
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等.
(学生自练个别回答教师点评)
3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.
三、巩固练习:
1. 练习:教材 P4 1、2、3       2. 作业:教材P9  第1题
第二课时 1.1.2 命题及其关系(二)
教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.
教学重点:四种命题的概念及相互关系.
教学难点:四种命题的相互关系.
教学过程:
一、复习准备:
指出下列命题中的条件与结论,并判断真假:
(1)矩形的对角线互相垂直且平分;
(2)函数有两个零点.
二、讲授新课:
1. 教学四种命题的概念:
  原命题   逆命题   否命题   逆否命题
 若,则  若,则 若,则 若,则
①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.
(师生共析学生说出答案教师点评)
②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)同位角相等,两直线平行;
(2)正弦函数是周期函数;
(3)线段垂直平分线上的点与这条线段两个端点的距离相等.
(学生自练个别回答教师点评)
2. 教学四种命题的相互关系:
①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.
②四种命题的相互关系图:
③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.
④结论一:原命题与它的逆否命题同真假;
结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.
⑤例2 若,则.(利用结论一来证明)(教师引导学生板书教师点评)
3. 小结:四种命题的概念及相互关系.
三、巩固练习:
1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.
(1)函数有两个零点;(2)若,则;
(3)若,则全为0;(4)全等三角形一定是相似三角形;
(5)相切两圆的连心线经过切点.
2. 作业:教材P9页  第2(2)题    P10页  第3(1)题
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网