中小学教育资源及组卷应用平台
2025人教版高中物理选择性必修第三册
第二章 气体、固体和液体
一、单项选择题(本大题共8小题,每小题3分,共24分。在每小题给出的四个选项中只有一个符合题目要求)
1.关于热力学温度,下列说法中正确的是 ( )
A.27 ℃相当于301.15 K
B.摄氏温度与热力学温度都可能取负值
C.温度变化1 ℃,也就是温度变化1 K
D.温度由t(℃)升至2t,对应的热力学温度升高了273.15 K+t
2.关于温度和分子动能,下列说法正确的是 ( )
A.物体的温度升高,物体内每个分子热运动的速率都增大
B.物体的温度越高,其内部分子的平均动能就一定越大
C.15 ℃的水蒸发成15 ℃的水蒸气后,内能不变,分子的平均动能也不变
D.达到热平衡的两个系统,其内部分子的平均动能可以不同
3.关于液体和固体的一些现象,下列说法正确的是 ( )
A.图(1)中水黾停在水面上是因为浮力作用
B.图(2)中水银在玻璃上形成“圆珠状”的液滴说明水银不浸润玻璃
C.图(3)中固体薄片上涂蜡,用烧热的针接触薄片背面上一点,蜡熔化的范围如图中空白所示,说明固体薄片是多晶体
D.图(4)中食盐晶体的原子是按照一定的规则排列的,具有空间上的周期性,因此每个原子都是静止不动的
4.如图为某兴趣小组发射的自制水火箭。发射前瓶内空气的体积为1.2 L,水的体积为0.8 L,瓶内空气压强为3 atm。打开喷嘴后水火箭发射升空,忽略瓶内空气温度的变化,外界大气压强为1 atm。瓶内的水喷完瞬间,瓶内空气的压强为 ( )
A.1.8 atm B.2.1 atm C.2.5 atm D.2.8 atm
5.在一个空的小容积易拉罐中插入一根两端开口、粗细均匀的透明玻璃管,接口用蜡密封,罐外玻璃管的长度L为44 cm,在玻璃管内有一段长度为4 cm的水银柱,构成一个简易的“温度计”。如图所示,将“温度计”竖直放置,当温度为7 ℃时,水银柱上端离管口的距离为40 cm。已知当地大气压强恒定,易拉罐的容积为140 cm3,玻璃管内部的横截面积为0.5 cm2,罐内气体可视为理想气体,使用过程中水银不溢出。热力学温度T与摄氏温度t的关系为T=t+273 K。该“温度计”能测量的最高温度为 ( )
A.47 ℃ B.52 ℃
C.55 ℃ D.60 ℃
6.杂技演员骑独轮车表演,开始时车胎内的气体压强为8×105 Pa,气体温度是t1,地面承受的压强为p1。表演一段时间后,由于温度变化,车胎内的气体压强变为8.2×105 Pa,气体温度为t2,地面承受的压强为p2。忽略车胎体积的变化和车胎与地面接触面积的变化,下列关系正确的是 ( )
A.t1
t2,p1C.t1p2 D.t1>t2,p1>p2
7.如图所示,左端封闭、右端开口的U形管内分别用水银封有两部分气体,右侧部分封闭气体的压强为p1,水银面高度差为h。当左侧部分气体温度升高较小的Δt,重新达到平衡后,h和p1的变化是 ( )
A.h变小 B.h不变
C.p1变小 D.p1变大
8.桶装纯净水及压水装置原理如图所示。圆柱形水桶直径为24 cm,高为35 cm;圆柱形气囊直径为6 cm,高为8 cm,水桶颈部的长度为10 cm。当人用力向下压气囊时,气囊中的空气被压入桶内,桶内气体的压强增大,水通过出水管流出。已知水桶所在处大气压强相当于10 m水柱产生的压强,当桶内的水还剩5 cm高时,桶内气体的压强等于大气压强,忽略水桶颈部的体积,忽略桶内水面位置的变化。至少需要把气囊完全压下几次,才能有水从出水管流出(不考虑温度的变化) ( )
A.3次 B.4次
C.5次 D.6次
二、多项选择题(本大题共4小题,每小题4分,共16分。在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)
9.下列说法中正确的是 ( )
A.显微镜下观察到墨水中的小炭粒所做的不停的无规则运动就是分子的热运动
B.把一枚曲别针轻放在水面上,它会浮在水面,这是由于水表面存在表面张力
C.干旱天气里锄松土壤,破坏土壤中的毛细管,有利于减少水分蒸发,保存地下水
D.浸润和不浸润是分子力作用的表现,如果附着层内分子间的距离小于液体内部分子间的距离,这样的液体与固体之间表现为不浸润
10.一定质量的理想气体的体积V与温度t的关系如图所示,该理想气体从状态A依次经过A→B→C→D→A的变化过程,其中CD段与t轴平行,DA的延长线过原点O,AB的反向延长线与t轴的交点坐标为(-273.15 ℃,0)。则 ( )
A.气体在A→B的过程中压强增大
B.气体在D→A的过程中压强不变
C.气体在D→A的过程中外界对气体做功
D.气体在B→C的过程中内能不变
11.
如图所示,一下端封闭、上端开口的粗细均匀的玻璃管竖直静置,长度l2=16 cm的水银柱封闭了一段空气(视为理想气体)柱,空气柱的长度l1=10 cm。外界大气压强恒为p0=76 cmHg。使玻璃管向上做加速度大小a=5 m/s2的匀加速直线运动时,管内空气温度保持不变。和竖直静置时相比较,下列说法正确的有 ( )
A.管内空气的压强增加了16 cmHg
B.管内空气柱的长度减少了1.6 cm
C.管内空气的压强增加了8 cmHg
D.管内空气柱的长度减少了0.8 cm
12.如图,容积为V0、高度为H的汽缸竖直放置,导热性良好,右上端有一阀门连接抽气孔。汽缸内有一活塞,初始时位于距离汽缸底部H处,下方密封有一定质量、温度为T0的理想气体。现将活塞上方缓慢抽至真空并关闭阀门,然后缓慢加热活塞下方气体。已知大气压强为p0,活塞横截面积为S、重力大小为p0S,活塞体积不计,忽略活塞与汽缸之间的摩擦。则在加热过程中 ( )
A.开始加热时,活塞下方气体体积为V0
B.温度从T0升至1.5T0,气体对外做功为p0V0
C.温度升至2T0时,气体压强为p0
D.温度升至3T0时,气体压强为p0
三、非选择题(本大题共6小题,共60分)
13.(6分)如图甲所示,用气体压强传感器探究气体等温变化的规律,操作步骤如下:
①把注射器活塞推至注射器中间某一位置,将注射器与压强传感器、数据采集器、计算机逐一连接;
②移动活塞,记录注射器的刻度值V,同时记录对应的由计算机显示的气体压强值p;
③重复上述步骤②,多次测量;
④根据记录的数据,作出V-图线,如图乙所示。
(1)完成本实验的基本要求是 (填正确答案标号)。
A.在等温条件下操作
B.封闭气体的注射器密封良好
C.必须弄清所封闭气体的质量
D.气体的压强和体积必须用国际单位制单位
(2)理论上由V-图线分析可知,如果该图线 ,就说明气体的体积跟压强的倒数成正比,即体积与压强成反比。
14.(8分)某实验小组用图1所示实验装置来进行“探究气体等温变化的规律”实验。
(1)在本实验操作的过程中,需要保持不变的量是气体的温度和 。
(2)关于该实验的操作,下列说法正确的是 。
A.在柱塞上涂抹润滑油可以提高装置的气密性
B.实验时应快速推拉柱塞并迅速读数,以避免气体与外界发生热交换
C.推拉柱塞及读取数据时不要用手握住注射器下半部分,以避免改变气体的温度
D.实验时必须测量柱塞的横截面积,以获知被封闭气体的体积
(3)为了探究气体在不同温度时发生等温变化是否遵循相同的规律,实验小组保持封闭气体质量不变的情况下,在不同的环境温度下进行了实验,得到的p-V图像如图2所示,由图可知,这两次实验气体的温度关系为T1 T2(选填“<”“=”或“>”)。
(4)实验小组同学作出p-图像,发现当气体压强增大到一定值后,实验数据描绘的图线偏离过原点的直线。若是因实验装置漏气导致的偏离,则描绘的图线可能如图3的 (选填“①”或“②”)所示。
15.(10分)路面井盖因排气孔(如图甲)堵塞可能会造成井盖移位而存在安全隐患。如图乙所示,质量为m的某井盖排气孔被堵塞且与地面不粘连,圆柱形竖直井内水面面积为S,初始时刻水面与井盖之间的距离为h,井内密封空气的压强恰好为大气压强p0,若井盖内的空气视为理想气体,温度始终不变,重力加速度为g。求:
(1)密闭空气的压强为多大时井盖刚好要被顶起;
(2)井盖被顶起前瞬间,水位上升的高度。
16.(10分)高原旅游,氧气袋是必备的应急物资,它重量轻,携带方便,深受旅游爱好者欢迎。现有一个钢制氧气瓶,容积V=50 L,里面氧气的压强为p=2.2×106 Pa。如果让此氧气瓶给氧气袋充气,已知氧气袋容积恒为V'=50 L,充满氧气后压强p'=1.1×105 Pa。已知氧气袋充气前里面没有气体,充气过程中环境温度保持27 ℃不变,热力学温度T与摄氏温度t的关系为T=t+273 K。
(1)氧气瓶中氧气最多能充满多少个氧气袋
(2)充满的氧气袋如果拿到9 ℃的山上压强变为多少
17.(10分)某兴趣小组设计了一温度报警装置,原理图如图所示,竖直放置的导热汽缸内用质量m=100 g、横截面积S=50 mm2、上表面涂有导电物质的活塞封闭一定质量的理想气体,当缸内气体的热力学温度T1=300 K时,活塞下表面与汽缸底部的距离h1=6 cm,上表面与a、b两触点的距离h2=2 cm。当环境温度上升,活塞缓慢上移至卡口处时恰好触发报警器报警。不计一切摩擦,大气压强恒为p0=1.0×105 Pa。求:
(1)该报警装置报警的最低热力学温度T;
(2)当环境的热力学温度升高到T2=600 K时,封闭气体的压强p。
18.(16分)如图所示,一水平放置的导热汽缸由横截面积不同的两圆筒连接而成,活塞A、B用原长为3L、劲度系数k=的轻弹簧连接,活塞可以在筒内无摩擦地沿水平方向滑动。A、B之间封闭着一定质量的理想气体,设活塞A、B横截面积的关系为SA=2SB=2S0,汽缸外大气的压强为p0=1×105 Pa,温度为T0=125 K。初始时活塞B与大圆筒底部(大、小圆筒连接处)相距L,汽缸内气体温度为T1=500 K。求:
(1)缸内气体的温度缓慢降低至380 K时,活塞移动的距离;
(2)缸内封闭气体与缸外大气最终达到热平衡时,弹簧的长度。
答案与分层梯度式解析
1.C 2.B 3.B 4.A 5.A 6.A
7.A 8.A 9.BC 10.CD 11.CD 12.AD
1.C 热力学温度与摄氏温度的关系为T=t+273.15 K,则27 ℃对应的热力学温度为T1=(27+273.15) K=300.15 K,A错误;摄氏温度可以取负值,但热力学温度不可能取负值,B错误;由热力学温度与摄氏温度关系式T=t+273.15 K,可知ΔT=Δt,所以温度变化1 ℃,也就是温度变化1 K,C正确;温度由t(℃)升至2t,初态热力学温度为t+273.15 K,末态热力学温度为2t+273.15 K,对应的热力学温度升高了t,D错误。故选C。
2.B 物体的温度升高,物体内分子热运动的平均速率增大,但不是物体内每个分子热运动的速率都增大,A错误;温度是物体内部分子热运动平均动能的标志,物体的温度越高,其内部分子的平均动能就一定越大,B正确;15 ℃的水蒸发成15 ℃的水蒸气要吸收热量,内能增加,由于温度不变,分子的平均动能不变,分子势能增大,C错误;达到热平衡的两个系统温度一定相同,其内部分子的平均动能一定相同,D错误。故选B。
3.B 图(1)中水黾停在水面上是因为表面张力的作用,A错误;图(2)中水银在玻璃上形成“圆珠状”的液滴说明水银与玻璃的接触面具有收缩趋势,水银不浸润玻璃,B正确;图(3)中蜡熔化的范围是椭圆,固体薄片的导热性能表现出各向异性,说明固体薄片是单晶体,C错误;图(4)中食盐晶体的原子是按照一定的规则排列的,具有空间上的周期性,每个原子都在平衡位置附近振动,D错误。故选B。
4.A 发射前,瓶内空气的压强和体积分别为p1=3 atm、V1=1.2 L,水刚喷完瞬间,瓶内空气的体积V2=1.2 L+0.8 L=2.0 L,设瓶内空气的压强为p2,瓶内气体经历等温变化,根据玻意耳定律有p1V1=p2V2,解得p2=1.8 atm,故选A。
5.A 当温度为T1=(273+7) K=280 K时,被封闭气体的体积为V1=140 cm3,当水银柱上端到达管口时,被封闭气体的体积为V2=(40×0.5) cm3+140 cm3=160 cm3,此时“温度计”测量的温度最高,设为T2,由盖-吕萨克定律有=,解得T2=320 K,则t2=47 ℃,故选A。
6.A 由题可知车胎内的气体体积不变而压强增大,由查理定律p=CT可知车胎内的气体温度升高,t17.A 设大气压强为p0,右侧封闭气体上方水银柱的高度为h1,则右侧部分封闭气体的压强p1=p0+ρgh1,由于p0和h1均不变,所以p1不变,C、D错误;设左侧封闭气体的压强为p2,当左侧部分气体温度升高时,假设气体体积不变,根据查理定律p=CT,可知p2增大,由于p1=p2+ρgh,可知h变小,A正确,B错误。故选A。
8.A
思路点拨 当桶内的水还剩5 cm高时,桶内气体的压强等于大气压强p0,要想使桶内的水从出水管流出,桶内气体压强至少需达到p1=p0+ρg(0.3 m+0.1 m)。
设至少需要把气囊完全压下n次,才能有水从出水管流出,设大气压强为p0,水桶内气体体积为V0,气囊体积为V1,根据玻意耳定律可得p0(V0+nV1)=p1V0,其中p0=ρgh=ρg×10 m,V0=π×(35-5) cm3=4 320π cm3,V1=π×8 cm3=72π cm3,p1=p0+ρg(0.3 m+0.1 m)=ρg×10.4 m,联立解得n=2.4,则至少需要把气囊完全压下3次。故选A。
9.BC 显微镜下观察到墨水中的小炭粒所做的不停的无规则运动是布朗运动,不是分子的热运动,A错误;一枚曲别针浮在水面上,浮力很小,可以忽略不计,是由于水的表面存在表面张力,B正确;干旱天气里锄松土壤,破坏土壤中的毛细管,有利于减少水分蒸发,保存地下水,C正确;如果附着层内分子间的距离小于液体内部分子间的距离,分子间作用力表现为斥力,使液体向固体表面扩张,这样的液体与固体之间表现为浸润,D错误。故选B、C。
10.CD 由于AB的反向延长线与横轴的交点坐标为(-273.15 ℃,0),可知,气体由状态A到状态B为等压变化,故A错误;分别把D、A与点(-273.15 ℃,0)连接,连线斜率越小,压强越大,所以气体在D→A的过程中压强变大,故B错误;气体在D→A的过程中,体积减小,外界对气体做功,故C正确;气体从状态B到状态C,温度不变,内能不变,故D正确。故选C、D。
11.CD 设静置时管内空气的压强为p1,则有p1=p0+ρgl2=92 cmHg。
设玻璃管向上加速时管内空气的压强为p2,管的横截面积为S,则有p2S-p0S-ρgl2S=ρl2Sa,解得p2=100 cmHg,可知,管内空气的压强增加了Δp=p2-p1=8 cmHg,A错误,C正确;由于空气温度保持不变,由玻意耳定律有p1l1S=p2l1'S,解得l1'=9.2 cm,可知,管内空气柱的长度减少了0.8 cm,B错误,D正确。故选C、D。
12.AD 最初时,活塞位于距离汽缸底部H处,气体的体积为V0,气体的压强p1=p0+p0=p0,将活塞上方缓慢抽至真空并关闭阀门,气体的压强变为p0,气体发生等温变化,根据玻意耳定律有p1·V0=p0V1,解得V1=V0,即加热过程开始时,活塞下方气体体积为V0,A正确;抽至真空并关闭阀门,活塞位于距离汽缸底部H处,气体体积为V0,温度为T0,缓慢加热气体,若活塞恰好到达汽缸顶部,此时气体体积为V0,设此时气体温度为T1,因为气体压强始终为p0,根据盖-吕萨克定律有=,解得T1=2T0,可知温度从T0升至1.5T0过程,活塞没有到达汽缸顶部,气体做等压变化,则有=,解得V2=V0,气体对外做功为W=p0S·Δh=p0=p0V0,B错误;结合上述分析可知,温度升至2T0时,活塞恰好到达汽缸顶部,气体压强为p0,C错误;气体温度由2T0升高至3T0过程气体做等容变化,根据查理定律有=,解得p2=p0,D正确。故选A、D。
13.答案 (1)AB(3分) (2)为过坐标原点的倾斜直线(3分)
解析 (1)本实验用气体压强传感器探究气体等温变化的规律,研究一定质量的气体在等温条件下压强和体积之间的关系,必须在等温条件下操作,气体质量不能变化,注射器不能漏气,A、B正确;实验采用的是控制变量法,保证气体质量、温度不变,不必弄清所封闭气体的质量,C错误;研究相同温度下一定质量的气体的压强和体积之间的关系,研究的是比例关系,同一物理量的单位相同即可,无须统一为国际单位制单位,D错误。故选A、B。
(2)由pV=CT可知,在等温条件下,若通过实验数据作出的V-图线是过坐标原点的直线,就说明气体的体积跟压强的倒数成正比,即体积与压强成反比。
14.答案 (1)质量(2分) (2)AC(2分) (3)<(2分) (4)②(2分)
解析 (1)在本实验操作的过程中,需要保持不变的量是气体的温度和质量。
(2)在柱塞上涂抹润滑油可以提高装置的气密性,A正确;实验时应缓慢推拉柱塞,等稳定后再读数,避免气体温度发生变化,B错误;推拉柱塞及读取数据时不要用手握住注射器下半部分,以避免改变气体的温度,故C正确;实验时不必测量柱塞的横截面积,用气柱的长度值代替气体的体积值即可,D错误。故选A、C。
(3)由图可知,T2对应的图像上的点p、V乘积较大,气体的温度较高,即这两次实验气体的温度大小关系为T1(4)根据=C可知p=CT,若装置漏气,则C减小,即图线的斜率减小,则描绘的图线为②。
15.答案 (1)p0+ (2)
解析 (1)对井盖进行受力分析有p0S+mg=pS (3分)
解得p=p0+ (2分)
(2)设井盖被顶起前瞬间,水位上升的高度为x,井内气体经历等温变化,对井内气体,由玻意耳定律有p0Sh=pS(h-x) (3分)
解得x=h= (2分)
16.答案 (1)19 (2)1.034×105 Pa
解析 (1)设氧气瓶中氧气最多能充满n个氧气袋,有pV=p'V+np'V' (3分)
解得n=19 (2分)
所以氧气瓶中氧气最多能充满19个氧气袋。
(2)对氧气袋中的氧气,
初态:T'=27 ℃=300 K,p'=1.1×105 Pa
拿到9 ℃的山上,T1=9 ℃=282 K,设压强为p1 (2分)
由= (2分)
得p1=1.034×105 Pa(1分)
17.答案 (1)400 K (2)1.8×105 Pa
解析 (1)当环境温度上升,活塞刚到达卡口处,
此过程中封闭气体等压膨胀,则有= (2分)
解得T=400 K(2分)
(2)环境温度为T1=300 K时,设汽缸内气体压强为p1,对活塞分析,
根据平衡条件有mg+p0S=p1S (2分)
当环境的热力学温度升高到T2=600 K时,设汽缸内气体压强为p,
根据理想气体状态方程有= (2分)
解得p=1.8×105 Pa(2分)
18.答案 (1)1.2L (2)2.5L
解析 (1)缸内气体的温度缓慢降低时,其压强不变,弹簧不发生形变,活塞A、B一起向右移动,设移动距离为x,对缸内气体有
V1=2S0·2L+S0L,T1=500 K(1分)
V2=2S0·(2L-x)+S0(L+x),T2=380 K(1分)
由盖-吕萨克定律可得= (2分)
解得x=1.2L
由于1.2L<2L,说明活塞A未碰到大圆筒底部,故活塞A、B向右移动的距离为1.2L。 (2分)
(2)活塞A刚刚碰到大圆筒底部时缸内封闭气体的体积V3=3S0L (1分)
由盖-吕萨克定律可得= (2分)
解得T3=300 K(1分)
此时,缸内封闭气体温度T3=300 K,体积V3=3S0L,压强p3=p0,
当缸内封闭气体与缸外大气温度相等时达到热平衡,由于T0=125 K所以气体体积应继续减小,设弹簧被压缩Δx时,达到热平衡,
此时缸内封闭气体温度T4=T0=125 K,体积V4=S0(3L-Δx),设压强为p4,
对活塞B受力分析,有p4S0+kΔx=p0S0 (2分)
根据理想气体状态方程有= (2分)
可得Δx1=0.5L,Δx2=3.5L(舍去) (1分)
所以弹簧长度为x=3L-Δx1=2.5L (1分)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)