高二期末复习4(直线与圆、圆与圆的位置关系)
【复习要求】
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;
2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
【内容梳理】
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r):
2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=O1O2):
3.直线被圆截得的弦长:
【强化训练】
1.M(x0,y0)为圆x2+y2=1内异于圆心的一点,则直线x0x+y0y=1与该圆的位置关系为( )
A.相切 B.相交 C.相离 D.相切或相交
2.若直线+=1与圆x2+y2=1相交,则( )
A.+<1 B.+>1 C.a2+b2<1 D.a2+b2>1
3.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是( )
A.外离 B.相交 C.外切 D.内切
4.若圆x2+y2+4x-4y=0和圆x2+y2+2x-8=0相交于M,N两点,则线段MN的长度为( )
A.4 B. C. D.
5.若一条光线从点A(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )
A.-或- B.-或- C.-或- D.-或-
6.已知点P在圆O:x2+y2=1上运动,若对任意点P,在直线l:x+y-4=0上均存在两点A,B,使得∠APB≥恒成立,则线段AB长度的最小值是( )
A.-1 B.+1 C.2-1 D.4+2
7.(多选题)已知圆C1:(x-a)2+(y+2)2=25,圆C2:(x+1)2+(y+a)2=4,若圆C1与圆C2内切,则实数a的值是( )
A.-2 B.2 C.-1 D.1
8.(多选题)已知圆C:(x-2)2+y2=1,点P是直线l:x+y=0上一动点,过点P作圆的切线PA,PB,切点分别是A和B,则下列说法错误的是( )
A.圆C上恰有一个点到直线l的距离为 B.切线PA长的最小值为1
C.四边形ACBP面积的最小值为2 D.直线AB恒过定点
9.(多选题)已知圆M:(x+cos θ)2+(y-sin θ)2=1,直线l:y=kx,则( )
A.对任意实数k与θ,直线l和圆M相切
B.对任意实数k与θ,直线l和圆M有公共点
C.对任意实数θ,必存在实数k,使得直线l和圆M相切
D.对任意实数k,必存在实数θ,使得直线l和圆M相切
10.已知过点P(0,1)的直线l与圆x2+y2+2x-6y+6=0相交于A,B两点,则当AB=2时,直线l的方程为________________.
11.(2023·新高考全国Ⅱ)已知直线x-my+1=0与⊙C:(x-1)2+y2=4交于A,B两点,写出满足“△ABC面积为”的m的一个值为________.
12.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程为________________________
13.已知P是直线3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线,A,B是切点,则四边形PACB面积的最小值为________.
14.若圆C1:(x-1)2+y2=r2(r>0)上存在点P,且点P关于y轴的对称点Q在圆C2:(x+2)2+(y-2)2=1上,则r的取值范围是__________.
15.写出一个经过原点,截y轴所得弦长是截x轴所得弦长2倍的圆的标准方程__________.
16.(2022·新高考全国Ⅰ)写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.
17.已知直线l是圆C:(x-2)2+(y-1)2=1的切线,并且点B(3,4)到直线l的距离是2,这样的直线l有________条.
18.已知圆C:(x-1)2+(y-2)2=5,圆C′是以圆x2+y2=1上任意一点为圆心,半径为1的圆.圆C与圆C′交于A,B两点,则当∠ACB最大时,CC′=________.
19.已知圆C:x2+y2-4x=0,直线l恒过点P(4,1).
(1)若直线l与圆C相切,求l的方程;
(2)当直线l与圆C相交于A,B两点,且AB=2时,求l的方程.
高二期末复习4(直线与圆、圆与圆的位置关系)
【复习要求】
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;
2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
【内容梳理】
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r):
相离 相切 相交
图形
量化 方程观点 Δ<0 Δ=0 Δ>0
几何观点 d>r d=r d
2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=O1O2):
外离 外切 相交 内切 内含
图形
量的关系 d>r1+r2 d=r1+r2 | r1-r2|3.直线被圆截得的弦长:
(1)几何法:弦心距d、半径r和弦长AB的一半构成直角三角形,弦长AB=2.
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则MN=·.
【二级结论】
1.圆的切线方程常用结论:
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论:
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程:
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).
【强化训练】
1.M(x0,y0)为圆x2+y2=1内异于圆心的一点,则直线x0x+y0y=1与该圆的位置关系为( )
A.相切 B.相交 C.相离 D.相切或相交
答案 C 解析 由题意知M(x0,y0)为圆x2+y2=1内异于圆心的一点,
则01=r,
故直线x0x+y0y=1与该圆的位置关系为相离.
2.若直线+=1与圆x2+y2=1相交,则( )
A.+<1 B.+>1 C.a2+b2<1 D.a2+b2>1
答案 B 解析 由直线+=1,可化为bx+ay-ab=0,因为直线bx+ay-ab=0与圆x2+y2=1相交,可得<1,整理得a2+b2>a2b2,所以+>1.
3.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是( )
A.外离 B.相交 C.外切 D.内切
答案 B 解析 由题意知,圆O1:(x-1)2+y2=1,可得圆心坐标O1(1,0),半径r1=1,
圆O2:x2+(y-2)2=4,可得圆心坐标O2(0,2),半径r2=2,
则两圆的圆心距O1O2==,则2-1<<2+1,
即|r2-r1|4.若圆x2+y2+4x-4y=0和圆x2+y2+2x-8=0相交于M,N两点,则线段MN的长度为( )
A.4 B. C. D.
答案 C 解析 x2+y2+4x-4y=0,①x2+y2+2x-8=0,②
由①-②可得x-2y+4=0.∴两圆的公共弦所在直线的方程是x-2y+4=0,
∵圆x2+y2+4x-4y=0的圆心坐标为(-2,2),半径为2,
∴圆心到公共弦的距离d==,
∴公共弦长为2=,即MN=.
5.若一条光线从点A(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )
A.-或- B.-或- C.-或- D.-或-
答案 D 解析 点(-2,-3)关于y轴的对称点为(2,-3),
由题意知,反射光线所在的直线一定过点(2,-3).设反射光线所在直线的斜率为k,
则反射光线所在直线的方程为y+3=k(x-2),即kx-y-2k-3=0.
由反射光线与圆相切,圆心为(-3,2),得=1,解得k=-或k=-.
6.(2023·武汉模拟)已知点P在圆O:x2+y2=1上运动,若对任意点P,在直线l:x+y-4=0上均存在两点A,B,使得∠APB≥恒成立,则线段AB长度的最小值是( )
A.-1 B.+1 C.2-1 D.4+2
答案 D 解析 如图,由题可知,圆心为O(0,0),半径R=1,
若直线l:x+y-4=0上存在两点A,B,使得∠APB≥恒成立,
则O:x2+y2=1始终在以AB为直径的圆内或圆上,点O(0,0)到直线l的距离d==2,所以AB长度的最小值为2(d+1)=4+2.
7.(多选题)已知圆C1:(x-a)2+(y+2)2=25,圆C2:(x+1)2+(y+a)2=4,若圆C1与圆C2内切,则实数a的值是( )
A.-2 B.2 C.-1 D.1
答案 BC 解析 由题可知圆心C1(a,-2),半径r1=5,
圆心C2(-1,-a),半径r2=2,因为圆C1与圆C2内切,
所以C1C2==|r1-r2|=3,解得a=-1或a=2.
8.(多选题)已知圆C:(x-2)2+y2=1,点P是直线l:x+y=0上一动点,过点P作圆的切线PA,PB,切点分别是A和B,则下列说法错误的是( )
A.圆C上恰有一个点到直线l的距离为 B.切线PA长的最小值为1
C.四边形ACBP面积的最小值为2 D.直线AB恒过定点
答案 AC 解析 对于A,由圆C:(x-2)2+y2=1,可得圆心C(2,0),半径r=1,
∴圆心C到直线l:x+y=0的距离为=,∵-1<<+1,故圆C上不是只有一个点到直线l的距离为,故A错误;
对于B,由圆的性质,可得切线长PA==,
当PC最小时,PA最小,又(PC)min=,则(PA)min=1,故B正确;
对于C,由四边形ACBP的面积为2××PA·CA=PA,
因为(PA)min=1,所以四边形ACBP的面积的最小值为1,故C错误;
对于D,设P(t,-t),由题知A,B在以PC为直径的圆上,
又由C(2,0),所以(x-t)(x-2)+(y+t)(y-0)=0,即x2+y2-(t+2)x+ty+2t=0,
因为圆C:(x-2)2+y2=1,即x2+y2-4x+3=0.
两圆的方程相减得直线AB:(2-t)x+ty-3+2t=0,即2x-3-t(x-y-2)=0,
由解得即直线AB恒过定点,故D正确.
9.(多选题) (2023·重庆九龙坡育才中学模拟)已知圆M:(x+cos θ)2+(y-sin θ)2=1,直线l:y=kx,则( )
A.对任意实数k与θ,直线l和圆M相切
B.对任意实数k与θ,直线l和圆M有公共点
C.对任意实数θ,必存在实数k,使得直线l和圆M相切
D.对任意实数k,必存在实数θ,使得直线l和圆M相切
答案 BD 解析 圆M:(x+cos θ)2+(y-sin θ)2=1恒过定点O(0,0),直线l:y=kx也恒过定点O(0,0),所以对任意实数k与θ,直线l和圆M有公共点,故B正确;
圆心M(-cos θ,sin θ),圆心到直线l的距离d===|sin(θ+α)|≤1,其中tan α=k,则对任意实数k,存在θ,使得直线l和圆M的关系是相交或者相切,故D正确,A错误;当θ=0时,圆M为(x+1)2+y2=1,此时不存在实数k,使得直线l和圆M相切,故C错误.
10.(2023·滁州模拟)已知过点P(0,1)的直线l与圆x2+y2+2x-6y+6=0相交于A,B两点,则当AB=2时,直线l的方程为________________.
答案 x=0或3x+4y-4=0 解析 因为圆x2+y2+2x-6y+6=0可以化为(x+1)2+(y-3)2=4,所以圆心为(-1,3),半径为r=2,
因为AB=2,所以圆心到直线的距离为d==1,
当直线l斜率不存在时,直线l的方程为x=0,
此时圆心(-1,3)到直线x=0的距离为1,满足条件;
当直线l斜率存在时,设斜率为k,直线l的方程为y=kx+1,则圆心(-1,3)到直线l的距离d==1,解得k=-,此时直线l的方程为3x+4y-4=0,
综上,所求直线的方程为3x+4y-4=0或x=0.
11.(2023·新高考全国Ⅱ)已知直线x-my+1=0与⊙C:(x-1)2+y2=4交于A,B两点,写出满足“△ABC面积为”的m的一个值为________.
答案 2 解析 设直线x-my+1=0为直线l,点C到直线l的距离为d,由弦长公式得AB=2,
所以S△ABC=×d×2=,解得d=或d=,
又d==,所以=或=,解得m=±或m=±2.
思维升华 弦长的两种求法
(1)代数法:将直线和圆的方程联立方程组,根据弦长公式求弦长.
(2)几何法:若弦心距为d,圆的半径长为r,则弦长l=2.
12.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程为________________________
答案 (x-2)2+(y-2)2=2 解析 曲线方程化为(x-6)2+(y-6)2=18,
其圆心到直线x+y-2=0的距离d==5.
所求的最小圆的圆心在直线y=x上,其到直线的距离为,圆心坐标为(2,2).
标准方程为(x-2)2+(y-2)2=2.
13.已知P是直线3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线,A,B是切点,则四边形PACB面积的最小值为________.
答案 2 解析 圆C:x2+y2-2x-2y+1=0,即圆C:(x-1)2+(y-1)2=1,
所以圆心C(1,1),半径r=1,如图,连接PC,
因为S四边形PACB=2S△PAC=2××AP·AC=AP=,
所以求S四边形PACB的最小值就是求PC的最小值,而PC的最小值就是圆心到直线3x+4y+8=0的距离d,即d==3,
即四边形PACB面积的最小值为=2.
思维升华 涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.
14.若圆C1:(x-1)2+y2=r2(r>0)上存在点P,且点P关于y轴的对称点Q在圆C2:(x+2)2+(y-2)2=1上,则r的取值范围是__________.
答案 [-1,+1] 解析 设圆C1关于y轴的对称圆为圆C3,其方程为(x+1)2+y2=r2,根据题意,圆C3与圆C2有交点,
又圆C3与圆C2的圆心距为=,
要满足题意,只需|r-1|≤≤r+1,解得r∈[-1,+1].
15.写出一个经过原点,截y轴所得弦长是截x轴所得弦长2倍的圆的标准方程__________.
答案 (x-1)2+(y-2)2=5(答案不唯一) 解析 显然圆截x轴、y轴所得弦的一个端点为O(0,0),设圆截x轴所得弦的另一端点为A(a,0),a≠0,则该圆截y轴所得弦的另一端点为B(0,2a)或B(0,-2a),
因此该圆的圆心C或C,半径r==|a|,
所以该圆的标准方程为2+(y-a)2=a2或2+(y+a)2=a2,
取a=2,得圆的一个标准方程为(x-1)2+(y-2)2=5.
16.(2022·新高考全国Ⅰ)写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.
答案 x=-1或7x-24y-25=0或3x+4y-5=0(答案不唯一,只需写出上述三个方程中的一个即可)
解析 如图,因为圆x2+y2=1的圆心为O(0,0),半径r1=1,圆(x-3)2+(y-4)2=16的圆心为A(3,4),半径r2=4,
所以OA=5,r1+r2=5,所以OA=r1+r2,所以两圆外切,公切线有三种情况:
①易知公切线l1的方程为x=-1.
②另一条公切线l2与公切线l1关于过两圆圆心的直线l对称.
易知过两圆圆心的直线l的方程为y=x,由得
由对称性可知公切线l2过点.设公切线l2的方程为y+=k(x+1),
则点O(0,0)到l2的距离为1,所以1=,解得k=,
所以公切线l2的方程为y+=(x+1),即7x-24y-25=0.
③还有一条公切线l3与直线l:y=x垂直,设公切线l3的方程为y=-x+t,
易知t>0,则点O(0,0)到l3的距离为1,
所以1=,解得t=或t=-(舍去),
所以公切线l3的方程为y=-x+,即3x+4y-5=0.
综上,所求直线方程为x=-1或7x-24y-25=0或3x+4y-5=0.
17.(2023·大庆模拟)已知直线l是圆C:(x-2)2+(y-1)2=1的切线,并且点B(3,4)到直线l的距离是2,这样的直线l有________条.
答案 4 解析 由已知可得,圆心C(2,1),半径r1=1.由点B(3,4)到直线l的距离是2,所以直线l是以B(3,4)为圆心,r2=2为半径的圆的切线,
又直线l是圆C:(x-2)2+(y-1)2=1的切线,所以直线l是圆C与圆B的公切线.
因为BC==>3=r1+r2,
所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l有4条.
18.(2023·赣州统考)已知圆C:(x-1)2+(y-2)2=5,圆C′是以圆x2+y2=1上任意一点为圆心,半径为1的圆.圆C与圆C′交于A,B两点,则当∠ACB最大时,CC′=________.
答案 2 解析 依题意,在△ABC中,AC=BC=,如图,
显然0又函数y=sin x在上单调递增,
因此当且仅当公共弦AB的长度最大时,∠ACB最大,此时弦AB为圆C′的直径,
在Rt△ACC′中,∠AC′C=90°,AC′=1,所以CC′==2.
19.已知圆C:x2+y2-4x=0,直线l恒过点P(4,1).
(1)若直线l与圆C相切,求l的方程;
(2)当直线l与圆C相交于A,B两点,且AB=2时,求l的方程.
解 (1)由题意可知,圆C的圆心为(2,0),半径r=2,
①当直线l的斜率不存在时,即l的方程为x=4,此时直线与圆相切,符合题意;
②当直线l的斜率存在时,设斜率为k,∴直线l的方程为y-1=k(x-4),
即kx-y+1-4k=0,若直线l与圆相切,则d==2,解得k=-,
∴l:-x-y+4=0,即l:3x+4y-16=0,综上,当直线l与圆C相切时,
所求直线l的方程为x=4或3x+4y-16=0.
(2)由题意可知,直线l的斜率一定存在,设斜率为k,∴直线l的方程为y-1=k(x-4),
即kx-y+1-4k=0,设圆心到直线l的距离为d,则d=,
由垂径定理可得,d2+2=4,即+3=4,
整理得,3k2-4k=0,解得k=0或k=,
则直线l的方程为y=1或4x-3y-13=0.