广东省阳江市江城区2024-2025学年度九年级上学期数学期末质量监测试卷(图片版,含答案)

文档属性

名称 广东省阳江市江城区2024-2025学年度九年级上学期数学期末质量监测试卷(图片版,含答案)
格式 zip
文件大小 4.0MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2025-01-11 16:17:41

文档简介

机密★启用前
2024一2025学年度第一学期期末质量监测试卷
九年级数学
本试卷共6页,23小题,满分120分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、姓名和准考证号填写在答
题卡上。将条形码粘贴在答题卡“条形码粘贴处”
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂
黑:如需改动,用橡皮擦干净后,再选涂其他答案。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内
相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂
改液。不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,只
有一项是符合题目要求的
1.下列方程中,是一元二次方程的是(
A.x-1=0
B.x+y=2
c.2+2=1
D.x2-1=0
2.汉语是中华民族智慧的结晶,成语又是汉语中的精华,是中华文化的一大瑰宝,具有
极强的表现力.下列成语描述的事件属于随机事件的是(
A.旭日东升
B.画饼充饥
C.守株待兔
D.竹篮打水
3.未来将是一个可以预见的AI时代,下列是世界著名人工智能品牌公司的图标,其中是
中心对称图形但不是轴对称图形的是()
4.在平面直角坐标系中,点(5,一6)关于原点对称的点的坐标是(
A.(5,6)
B.(-5,-6)
C.(5,-6)
D.(-5,6)
5.将抛物线y=3x2+2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线
的解析式为(
A.y=3x+2)2+3
B.y=3x+2)2-1
C.y=3(x-2)2+3
D.y=3(x-2)2-1
6.若关于x的方程x2一6x一m=0没有实数根,则实数m的取值范围是(
A.m>9
B.m>-9
C.m<9
D.m<-9
九年级数学试卷第1页(共6页)
7.如题7图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,
小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数
为()
A.119°
B.120°
C.61°
D.121°
8.正多边形的一部分如题8图所示,若∠ACB=18°,则该正多边形的边数为()
A.7
B.8
C.9
D.10
题7图
题8图
题9图
9.如题9图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另
一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽
度为(
A.1cm
B.2cm
C.3cm
D.4cm
10.在同一坐标系中,一次函数y=ar十2与二次函数y=x2+a的图象可能是(
二、填空题:本大题共5小题,每小题3分,共15分,请将下列各题的正确答案填写在
答题卡相应的位置上.
11.抛物线y=(x一2)2-1的顶点坐标是
12.点A(1,y),B(2,y2)都在二次函数yx2十1的图象上,则y1y2.(填“>”、“=”
或“<”)
13.若m是一元二次方程x2-2x一1=0的一个实数根,则代数式m2-2m十2024=
九年级数学试卷第2页(共6页)2024—2025 学年度第一学期期末质量监测试卷
九年级数学参考答案及评分标准
说明:除选择题外,提供的答案不一定是唯一答案,其它合理答案可酌情给分。
一、选择题:本大题共 10小题,每小题 3分,共 30分。
题号 1 2 3 4 5 6 7 8 9 10
答案 D C A D B D A D C B
二、填空题:本大题共 5小题,每题 3分,共 15分。
题号 11 12 13 14 15
答案 (2,-1) < 2025 3π 5
三、解答题(一):本大题共 3小题,每小题 7分,共 21分.
16.解:x2+4x=12,······································································ 1分
x2+4x+4=12+4,·································································· 3分
(x+2)2=16, ··········································································· 5分
则 x+2=±4, ·········································································6分
x=±4-2
∴x1=-6,x2=2········································································7分
17.(1)作图如下:
········································ 4分
(2)4m················································································································7分
18.(1 k)根据题意,设 y= , ··························································· 1分
x
把 x=4,y=3代入,得 k=4×3=12,···································· 3分
y x 12∴ 关于 的函数解析式为 = . ·········································4分

2 12 12( )把 y=2代入 = ,得 2= ,···············································5分

解得 x=6,·········································································6分
∴ 小孔到蜡烛的距离为 6cm.··············································· 7分
四、解答题(二):本大题共 3小题,每小题 9分,共 27分.
九年级数学参考答案及评分标准 第 1 页 (共 6 页)
19 1 1.( ) .····································································································3分
3
(2)画树状图如下:
·····································6分
由树状图可知,共有 9种可能的结果:(A,A),(A,B),(A,C),(B,A),(B,
B),(B,C),(C,A),(C,B),(C,C);两人恰好选择同一项目的结果有 3种,
························································································ 8分
3 1
∴两人恰好选择同一项目的概率 P= = ································ 9分
9 3
20.(1)证明:如 20题答案图,连接 OD,则 OD=OB,
答案题 20图
∴∠ODB=∠B,································································· 1分
∵AB=AC,
∴∠C=∠B,
∴∠ODB=∠C,
∴OD//AC, ·······································································2分
∵DE⊥AC于点 E,
∴∠ODE=∠CED=90°, ·················································· 3分
∵OD是⊙O的半径,DE⊥OD,
∴DE是⊙O的切线;··························································· 4分
(2)连接 AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,······································································ 5分
∵AB=AC,
∴BD=CD,
∵∠B=∠C=30°,OD=OA,
∴∠AOD=2∠B=60°,
∴△AOD是等边三角形, ·····················································6分
九年级数学参考答案及评分标准 第 2 页 (共 6 页)
∴OD=AD 1= AB=1 ···························································· 7分
2
∵∠ADE=∠ODE-∠ODA=90°-60°=30°,
∴ 1= ·············································································8分
2
∴ = 2 2= 12 ( 1 )2 3= ······································ 9分
2 2
21.任务 1:20;40·········································································· 2分
任务 2:设收纳盒高为 xcm,依题意得:·········································3分
1 (100-2x)(40-2x)=350,··················································· 6分
2
∴x1=15,x2=55(舍去)····················································· 7分
∴收纳盒长、宽、高分别为 35cm、10cm、15cm,······················8分
∵10cm<15cm,
∴玩具机械狗不能放入该收纳盒.···········································9分
五、解答题(二):本大题共 2小题,第 22题 13分,第 23题 14分,共 27分.
22.(1)∵AE=2,BE=4,∠AEB=90°,
∴AB= AE2+BE2= 22+42=2 5,·······································1分
∵四边形 ABCD是正方形,
∴BC=AB=2 5,∠ABC=90°················································2分
∴AC= 2AB=2 10,························································· 3分
由旋转的性质得:AB'=AB=2 5,
∴CB'=AC-AB'=2 10-2 5; ············································ 4分
(2)①四边形 AEFE'是正方形,理由如下:····································· 5分
由旋转的性质得:
AE'=AE,∠EAE'=α=90°,∠AE'D=∠AEB=90°····················· 6分
∵∠AEF=180°-90°=90°
∴四边形 AEFE'是矩形,······················································· 7分
又∵AE'=AE
∴四边形 AEFE'是正方形;···················································· 8分
②过点 C作 CG⊥BE于点 G,如答案 22题图所示:
九年级数学参考答案及评分标准 第 3 页 (共 6 页)
答案题 22图
则∠BGC=90°=∠AEB··························································· 9分
∴∠CBG+∠BCG=∠CBG+∠ABE=90°
∴∠BCG=∠ABE,······························································ 10分
在△BCG和△ABE中,
∠BGC=∠AEB
∠BCG=∠ABE
BC=AB
∴△BCG≌△ABE AAS ························································· 11分
∴CG=BE=4,BG=AE=2,···············································12分
∴EG=BE-BG=4-2=2
∴CE= CG2+EG2= 42+22=2 5······································· 13分
23.(1)把点 A(-1,0) y 1 x2 3代入抛物线 =- + x+c中,
2 2
1 3
则- - +c=0,······························································ 1分
2 2
解得:c=2, ·····································································2分
1 3
故抛物线的解析式为:y=- x2+ x+2. ······························ 3分
2 2
(2)∵⊙D经过 B,C两点,则 DB=DC, ···································· 4分
设 D(0,y),则 CD=|2-y|, ·················································5分
BD2=(0-y)2+42=16+y2,CD2=(2-y)2,
∴16+y2=(2-y)2, ···························································· 6分
解得:y=-3.
故点 D坐标为(0,-3). ······················································7分
(3)证明:在点 P 运动过程中,存在能够使得∠PBC=45°的点 P,理由如下:
九年级数学参考答案及评分标准 第 4 页 (共 6 页)
························································································· 8分
①设当 P点在 x轴上方抛物线上时,设∠PBC=45°,如答案 23-4图所示,
作 PS⊥BC于 S,SM⊥x轴,PN⊥SM于 N,
答案题 23-4图
∴∠PSB=∠N=∠SMB=90°,∠PBC=∠SPB=45°,
∴∠PSN=∠SBM=90°-∠MSB,PS=SB,
∴△SNP≌△BMS, ······························································ 9分
∴SM=PN,BM=NS,
设lBC:y=kx+b,代入 B(4,0),C(0,2),可得:
b=2 k
1
=-
,解得 2,
4k+b=0 b=2
故l 1BC:y=- x+2,························································· 10分2
设 S s 1,- s+2 ,
2
∴SM=PN 1=- s+2,BM=NS=4-s,
2
1 3
∴点 P坐标为 s+2,6- s ,
2 2
P 1把点 s+2,6 3 1 3- s 代入抛物线 y=- x2+ x+2中可得
2 2 2 2
3 26- s 1 1 s 2 3 1=- + + s+2 +2,解得s1=4,s =6,2 2 2 2 2 2
∵0<s<4,
∴点 P不存在;································································ 11分
②设当 点在 下方抛物线上时,如答案 23-5图所示,
九年级数学参考答案及评分标准 第 5 页 (共 6 页)
答案题 23-5图
作∠PBC=45°,CR⊥PB于 ,过 作 RT⊥y轴,过 B作 BQ⊥TR于点 Q,
∴∠CTR=∠CRB=∠Q=90°,∠PBC=∠RCB=45°,
∴∠CRT=∠RBQ=90°-∠BRQ,CR=BR,
∴△CTR≌△RQB, ···························································· 12分
∴TR=BQ,CT=RQ,
设 TR=BQ=a,CT=RQ=b,
a+b=4 a=1
则 ,解得: ,
b-a=2 b=3
∴ R点坐标为(1,-1).
1 4
则由待定系数法可得直线lBR:y= x- ,······························ 13分3 3
y 1 3 5=- x2+ x+2 x=-
联立 2 2 3
y 1 x 4
,解得: 17,
= - y=-
3 3 9
P 5 17即点 坐标为 - ,- .
3 9
5 17
综上所述,点 P坐标为 - ,- .···································· 14分
3 9
九年级数学参考答案及评分标准 第 6 页 (共 6 页)
同课章节目录