湖北省武汉市江岸区2024-2025学年度高三元月调考数学试卷(PDF版,含答案)

文档属性

名称 湖北省武汉市江岸区2024-2025学年度高三元月调考数学试卷(PDF版,含答案)
格式 zip
文件大小 8.2MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2025-01-10 13:47:04

文档简介

2024一2025学年度高三元月调考
数学试卷参考答案
一、单项选择题:本题共8小题,每小题5分,共40分
1.C2.B3.A4.A5.C6.D7.C
8.D
二、多项选择题:本题共3小题,每小题6分,共18分,
9.ACD 10.ABC 11.BD
三、填空题:本题共3小题,每小题5分,共15分
12.-40
13.15
14.号
四、解答题:本题共5小题,共77分
15.解:1)f'(x)=wCOS.由题意有f0)=k=1
得∫@2
………5分
f'(0)=w=2'府{k=1
(2)由(1)知g(x)=x-sin2x-1,g'(x)=1-2cos2x
当x∈[-,]g'x)=1-2o20
当xe[8]gx)-1-2o2x≥0
g)在[-,]单调递减[]
单调递增,
…13分
16.证明:(1)在等腰梯形ABCD中,∠BCD=∠ADC=45°,所以AD⊥BC
在正方形CDEF中,CD⊥CF,因为平面ABCD⊥平面CDEF,且平面ABCD∩平面
CDEF=CD,且CF⊥CD,所以CF⊥平面ABCD,从而AD⊥CF又因为BC,CFC平面BCF,
且BC∩CF=C,故AD⊥平面BCF.
而ADC平面ADE,所以平面ADE⊥平面BCF.…6分
解:(2)分别取AB,CD,EF中点M,N,P
由等腰梯形和正方形的性质知NM⊥ND,ND⊥NP
由(1)知,NP⊥NM,故可以N为原点,ND为x轴正方向建立坐标系N一xyz,
因为CD=3AB,所以设D(3,0,0).则A(1,0,2),C(-3,0,0),E(3,6,0)
设平面ADE和平面AEC的一个法向量为航京,则正·立=0,,·C=0
i,·DE=0'{n.CE=0
可取元=(1,0,1),i:=(1,-1,-2).c0si2)1=1-2=3
√2·√6
6
所以平面ADE和平面AEC夹角的余弦值为尽
6,………………………………15分
1
17.解:(1)依题意,列出2×2列联表为:
出现诊断问题人数
未出现诊断问题人数
总计
男性人数
11
189
200
女性人数
25
175
200
总计
36
364
400
零假设H。:出现诊断问题与性别无关,则
X2=400X(11X175-25X189)2700
36×364×200×200
117
≈5.9836.635,
故可以认为,依据小概率值α=0.010的独立性检验,没有充分的证据证明零假设H。不成立,即
认为出现诊断问题与性别无关;…6分
(2)当m∈[155,160]时,f(m)=p(m)+q(m)
=(m-155)×0.008+(160-m)×0.012+0.008×5=0.72-0.004m,
当m∈(160,165]时,f(m)=p(m)十q(m)
=0.008×5+(m-160)×0.016+(165-m)×0.008=0.008m-1.2.
0.72-0.004m,m∈[155,160]
所以f(m)=
0.008m-1.2,m∈(160,165]
所以f(m)在[155,160]上单调递减,在(155,160]上单调递增,故当m=160时,有fmm(m)=
0.08.
在实际中,以f(m)取得最小值时的临界值m一160为标准,可以使漏诊率与误诊率的和最小,
是检测效果最好的临界值.…15分
18,解:1)设直线AB方程:x=y+号,代入y=2px中,消去x得y-2py一b=0,
设A(x1y1),B(x2y2),则y1十y2=2t,y1y2=一p2.
∴.AB|=W1+t2|y1-y2|=√1+t2√/4p2(1+t2)=2p(1+t2)
当t=0时,有|AB的最小值为2p.
,2p=4,故E的方程为y2=4x.…
…4分
(注意:直接用二级结论扣2分)
(2)(i)设直线AC方程:x=my十2-2m,A(x1,y1),C(x8ya).
由K=my+2-2

y2=4x
消去x得y2-4my十8m-8=0.1十y=m
y1y3=8m-8
又由(1)知y:=-4.
4
,直线BD的斜率kD=
44
y1十ya
直线D的方程)=)化简得y++)y+4=02024~2025学年度高三元月调考
数学试卷
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符
合题目要求的
1,设集合A={x∈N|3x<6,B={2,3,4,8},则图中阴影部分表示的集合为()
A.{2,8}
B.{3,4}
C.{2,5,8}
D.{3,4,5}
2.若之+2=,则x(2十2)=()
A.2i
B.2
C.-1+3i
D.1-3i
3.已知a+|=a-1,且a+在书上的投影向量为()
A.方
B.-方
C,a
D.-a
4葫芦摆件作为中国传统工艺品,深受人们喜爱,它们常被视为吉祥物,象征福禄、多子多福,如图
所示的葫芦摆件从上到下可近似看作由一个圆柱与两个完整的球组成的儿何体,若上、中、下三
个几何体的高度之比为3:4:5,且总高度为24cm,则下面球的体积与上面球的体积之差约为
()(π≈3)
A.244 cm
B.108cm3
C.432cm3
D.1952cm
5某校举办中学生运动会,某班的甲、乙、丙、丁、戊5名同学分别报名参加跳远、跳高、铅球、跑步4
个项目,每名同学只能报1个项目,每个项目至少有1名同学报名,且甲不能参加跳远,则不同的
报名方法共有()
A.60种
B.120种
C.180种
D.240种
1
.已知函数f(x)=2cos(ax十p)(m>0)的图象如图,点A(TW包),B在∫(x)的图象上,过A,B
分别作x轴的至线,垂足分别为C,D,若因边形ACBD为平行四边形,且面积为号,则了(爱)
=(
A.-√2
B.-1
C.√2
D.1
7,设双曲线C:-=1(a>0,b>0)的左有焦点分别为F,:点P在双曲线C上,过点P作
C的两条渐近线的垂线,垂足分别为D、E,若∠F.PF,=120°,且√3|PD||PE引=S△er2,则双
曲线两条渐近线的斜率为()
A号
B.±1
C.±√2
D.土√3
8.设函数f(x)=(e-m)ln(x十n),若f(x)≥0,则m十的最小值为()
A号
BR司
C.1
D.2
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题
目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知正四棱台ABCD-A1B,C,D1的体积为62,AB=2A1B:=2,则()
A正四棱台的高为
B.AA:与平面A1B,C1D,所成的角为60
C.平面ABCD与平面ABB1A,夹角的正切值为√2
D.正四棱台外接球的表面积为10π
2
同课章节目录