山东省烟台市2024-2025学年度第一学期期末学业水水平诊断高三数学试题(PDF版,含答案)

文档属性

名称 山东省烟台市2024-2025学年度第一学期期末学业水水平诊断高三数学试题(PDF版,含答案)
格式 zip
文件大小 1.5MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2025-01-13 14:32:00

文档简介

2024~2025学年度第一学期期末学业水平诊断
高三数学试题
注意事项:
1.本试题满分150分,考试时间为120分钟,
2.答卷前,务必将姓名和准考证号填涂在答题纸上。
3.使用答题纸时,必须使用05毫米的黑色签字笔书写,要字迹工整,笔迹清晰,超出答题区
书写的答案无效:在草稿纸、试题卷上答题无效
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项
符合题目要求。
1.设集合A={1,a},B={0,1-a,2a-1},若A≤B,则a=
A.-1
B.1
C.
1
D.0
2
2.“1>1”是“na<0”的
a
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3.若cos0-=名,则sin(20+=
63
.61
c.、5
9
4.已知向量a,b满足|a+b=2√5,a⊥(a-2b),且b=(1,1),则|a=
A.√5
B.2
c.5
D.3
5.函数f=xn,x
x的图象大致为
A.
B.
6.已知F为抛物线y2=2x的焦点,直线2x-y-4=0与抛物线交于A,B两点,则△ABF
的面积为
A.7
3w17
c.37
317
2
2
4
高三数学试题(第】页,共4页)
7.已知三棱锥P-ABC的底面△ABC的面积为6,顶点P到底面三条边的距离均相等,且
三个侧面的面积分别为3,4,5,则该三棱锥的体积为
A.3
B.2V5
C.4v5
D.6W5
8.已知f(x)为定义在R上的奇函数,其导函数为g(x),且g(x)-e为奇函数,则不等式
g(1-2x)A.(-0,
5)
C.(5,+o)
D.((-∞,2)U(1,+∞)
二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题
目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.已知函数f(x)=sin2x-2cosx,则
A.f(x)的最小正周期为π
B.fx)的图象关于点(西,0)对称
C。f在红餐名上单调避诚
D.f(x)(x∈[一π,π])图象与x轴有3个公共点
6
10.阿波罗尼斯是古希腊数学家,他研究发现:如果平面内一个动点到两个定点的距离之比为
常数见(2>0,且九≠1),那么这个点的轨迹为圆,这就是著名的阿氏圆.若点P到点
O(0,0)与点A(2,0)的距离之比为V2,则
A.点P的轨迹方程为(x-4)2+y2=8
B点P到直线3x-4y+12=0距离的最小值为幻
C.点P到圆x2+y2=1上的点的最大距离为5+2W2
D.若到直线-y-2k=0的距离为√2的点P至少有3个,则-1≤k≤1
11.若数列{an}满足引ank1,则称其为“H数列”.给定数列A-1(k∈N),若Ak-1为“H
数列,定义41上的T变换:从41中任取两项4,41,将添加在4,所有项的
J+aai
最前面,然后删除4,a,记新数列为A(约定:一个数也视作数列)下列结论正确的有
A.若a∈(0,1),ant1=2an-sina,则数列{an}为“H数列”
B.若a∈(0,1),al=ln(2-an)+an,则数列{an}为“H数列”
C.若无穷数列A为“H数列”,则41为“H数列”
D若数4为许则人,内a>)
n2+n+2
高三数学试题(第2页,共4页)2024~2025 学年度第一学期期末学业水平诊断
高三数学试题参考答案
一、选择题
D C A D B C B B
二、选择题
9.BC 10.ACD 11.BCD
三、填空题
1 5 6
12.如 x 2 , (答案不唯一) 13. 14.
| x | 2 3
四、解答题
sin A sin C a2 b2 a c a2 b2
15.解:(1)因为 = 2 ,由正弦定理得 = 2 , ················ 2分 sin C c c c
2 2 2
ac = a2 + c2 b2 a + c b ac 1化简得 , 由余弦定理cos B = = = . ··········· 4分
2ac 2ac 2
B (0, ) B π又因为 ∈ π ,所以 = . ··························································· 6分
3
c a 2 4 3 4 3
(2)由正弦定理 = = ,所以a = sin A,c = sin C ,
sin C sin A sin π 3 3
3
B π 2π 2π又 = ,所以 A+C = ,所以C = A,
3 3 3
4 3 2π
所以 ABC 的周长 l = 2+ (sin A+ sin( A)) ································ 8分
3 3
3 1
= 2+ 4( sin A+ cos A) π= 2+ 4sin(A+ ) ····························· 10分
2 2 6
ABC π 2π π π π又 为锐角三角形,0 < A < ,0 < A < ,即 < A < , ········· 11分
2 3 2 6 2
π 3 π
所以 < A π 2π+ < ,所以 < sin(A+ ) ≤1,
3 6 3 2 6
所以周长 l∈ (2+ 2 3,6]. ······························································· 13分
16.解:(1) f (1) =1,因为点 (1,1) 在 ax by +1= 0 上,所以a b +1= 0 . ··········· 2分
又 f ′(x)
a 2
= , ························································· 3分
x (x +1)2
高三数学答案(第 1 页,共 5 页)
a b +1= 0
1
所以 f ′(1) = a ,联立
2 1 a
, ······················································· 4分
a = 2 b
1 1
解得a =1,b = 2 或a = ,b = . ·················································· 6分
2 2
2
(2) f (x) a 2 ax + 2(a 1)x + a的定义域为 (0,+∞), f ′(x) = 2 = 2 , ············ 8分 x (x +1) x(x +1)
令 g(x) = ax2 + 2(a 1)x + a , x∈ (0,+∞) .
①当a ≤ 0 时, f ′(x) < 0,函数 f (x) 在 (0,+∞)上单调递减; ························ 10分
②当a > 0时, = 4(a 1)2 4a2 = 4(1 2a) ,
1
当 a ≥ 时, ≤ 0, g(x) ≥ 0,即 f ′(x) ≥ 0, f (x) 在 (0,+∞)上单增; ········· 12分
2
当0
1
< a < 时, > 0,g(x) = ax2 + 2(a 1)x + a = 0 1 a ± 1 2a有正根
2 x1, x2 =
.
a
1 a 1 2a 1 a + 1 2a
当 x∈ (0, ) ,或 x∈ ( ,+∞) 时, f ′(x) > 0, f (x) 单增;
a a
x (1 a 1 2a ,1 a + 1 2a当 ∈ )时, f ′(x) < 0, f (x) 单减. ·············· 14分
a a
综上,当a ≤ 0 时,函数 f (x) 在 (0,+∞)上单调递减;
0 1当 < a < 时, f (x) 在
2 (0,
1 a 1 2a ) (1 a + 1 2a和 ,+∞) 上单调递增,
a a
1 a 1 2a 1 a + 1 2a 1
在 ( , )单减;当a ≥ 时, f (x) 在 (0,+∞)单增. ·· 15分
a a 2
17.解:(1)连接 AC ,取 BC 中点O,连接 AO,OP,
在直角梯形 ABCD中,由已知可得 AD = 3 , AC = 2 , ································· 2分
又 AB = BC = 2,O为等边 ABC 的边 BC 中点,所以 AO ⊥ BC . ···················· 3分
又因为 PBC 为等边三角形,O为 BC 中点,所以OP ⊥ BC . ··························· 4分
因为 AO OP = O , AO 平面 AOP, PO 平面 AOP,
所以 BC ⊥平面 AOP, ········································· 5分
又因为 AP 平面 AOP,所以 AP ⊥ BC . ········································ 6分
高三数学答案(第 2 页,共 5 页)
(2)由(1)可知∠AOP为二面角 A BC P 的平面角,所以∠AOP=120 . ·········· 7分
以O为坐标原点,以OA,OB以及垂直于平面 AOB的方向分别为 x, y, z 轴的正方向,建
立空间直角坐标系O xyz 如图所示,
则 A( 3,0,0) , D( 3 , 3 ,0),
2 2
P( 3 ,0, 3 ),C(0, 1,0),
2 2
3 3 3 3 3
故有 AP = ( ,0, ), DP 3 3= ( 3, , ),CP = ( ,1, ),·················· 10分
2 2 2 2 2 2
设m = (x, y, z)为平面 APD的一个法向量,
3 3 3
x + z = 0
则有 2 2 ,取 x = 3 ,可得m = ( 3, 1,3), ······················ 13分
3 3
3x + y + z = 0 2 2
3
× 3 9 1+

所以cos < m,CP >= 2 2 13= ,
2 13 13
CP 13故直线 与平面 APD所成角的正弦值为 . ······································· 15分
13
x2 y2
18.解:(1)设双曲线C : = λ, ··················································· 2分
4 3
将点 (4,3) 16 9代入方程可得 = λ,解得λ = 1,
4 3
x2 y2
所以,双曲线方程为 = 1. ··················································· 4分
4 3
(2)(i)设直线 l 与C 的右支交于点 A(x1 , y1 ), B(x2 , y2 ).
当 l 的斜率存在时,不妨设 l : y = kx + m,
x2 y2
= 1
联立 4 3 ,消 y 可得 (3 4k 2 )x2 8kmx 4m2 12 = 0 ,
y = kx + m
8km 4m2x 12于是 1 + x2 = 2 , x1x2 = 2 . ············································ 6分 3 4k 3 4k
因为以 AB 为直径的圆过双曲线的右顶点 (2,0),
高三数学答案(第 3 页,共 5 页)
y
所以 1
y
2 = 1,即 y1 y2 + x1x2 2(x1 + x2 ) + 4 = 0, ····················· 7分 x1 2 x2 2
又 y1 = kx1 +m, y2 = kx2 +m ,所以 (1+ k 2 )x1x2 + (km 2)(x + x ) + m
2
1 2 + 4 = 0 .
4m2 12 8km
所以 (1+ k 2 ) 2 + (km 2)
2
3 4k 3 4k 2
+ m + 4 = 0,
整理可得 m2 +16km + 28k 2 = 0,即 (m + 2k)(m +14k) = 0,
所以m = 2k 或m = 14k , ······························································ 9分
当直线为 y = k(x 2) 时,过定点 (2,0),不满足条件;
当直线为 y = k(x 14)时,过定点 (14,0) , ·················································· 10分
x2
又当 l 的斜率不存在时,由 x1 2 = 3× 1 1 ,得直线 x =14 ,亦过点 (14,0) , 4
所以,直线 l 过定点 (14,0) . ·································································· 11分
2
(ii)因为直线与双曲线右支交于两点,所以 = 48(192k + 3) > 0 ,
x x 112k
2
0 4(196k
2 + 3)
1 + 2 = 2 > , x
2
4k 3 1
x2 = 2 > 0,所以4k 3 > 0 . ··············· 12分 4k 3
2 2

OA OB = x1x2 + y1 y2 = (1+ k
2 )x1x2 + km(x x ) m
2 m +12k +12
1 + 2 + = 4k 2 3
( 14k)2 2
又m = 14k +12k +12 168,所以OA OB = 2 = 52+4k 3 4k 2
, ················ 14分
3
2 2 2
对于直线 y = kx +m,令 x = 0 ,可得M (0, m),即OM = m =196k , ·········· 15分
6 2 168 6
所以OA OB + OM = 52+ + ×196k 2
7 4k 2 3 7
= 52+168( 12 + k
2 ) = 52 168( 1 1 (4k 2 3) 3+ 2 + + ) 4k 3 4k 3 4 4
52 168 (2 1 3≥ + × + ) = 346 , ································· 16分
4 4
1 1
当且仅当 = (4k 2
5
2 3),即 k
1
= ± 或 k = ± 时,“=”成立,
4k 3 4 2 2
6 2
综上,OA OB + OM 的取值范围为[346,+∞) . ··········································· 17分
7
高三数学答案(第 4 页,共 5 页)
19.解:(1)当n =1时, S1 = 2a1 2,所以a1 = 2 . ······································· 1分
当 n ≥ 2 时, S *n 1 = 2an 1 2,又 Sn = 2an 2 , n∈N ,
a = S S = 2(a a ) a所以 n n n 1 n n 1 ,即 n = 2 (n ≥ 2), ································ 3分 an 1
所以数列{an}是以2为首项、2为公比的等比数列,所以an = 2
n . ··················· 4分
(2)(i)因为b1 = 2,所以b2 = 4 或b2 = 8 .
当b2 = 4 ,则b2 ,b3, ,bn 各项分别除以 2 后,恰是 a1,a2 , ,an 1 满足条件①②的排列,
其个数为cn 1; ··································································· 5分
当b2 = 8,b3 = 4,则b4 =16,此时b4 ,b5 , ,bn 各项分别除以8后,恰是a1,a2 , ,an 3
满足条件①②的排列,其个数为cn 3 ; ························································· 7分
当 b2 = 8 , b3 ≥16 ,设 bk+1是该排列中第一个出现的 2 的偶数次幂,则前 k 个数应是
2,23, 25, 2k 1 , 2 ,b 22k 2k 2k+1应是 或 2 .由条件②知,排在bk+1后的各数,要么都小于bk+1,
要么都大于bk+1.因为4在bk+1后面,此时仅有 1 个排列,即递增排出所有2的奇数次幂,
再依递减的顺序排出所有的 2的奇数次幂. ················································ 10分
综上,得到递推关系cn = cn 1 + cn 3 +1(n ≥ 4) . ············································· 11分
因为c4 = c3 + c1 +1,c5 = c4 + c2 +1, ,c n+2 = cn+1 + cn 1 +1,cn+3 = cn+2 + cn +1,
将所有式子相加,得:cn+3 = c1 + c2 + + cn + n + c3 ,
因为c3 = 2,所以cn+3 = Tn + n + 2,得证. ··················································· 13分
(ii)因为c1 =1,c2 =1, c3 = 2,由递推公式可得cn 除以2的余数依次为:
1,1,0,0,0,1,0,1,1,0,0,0,1,0,1, ,猜测余数列以7 为周期. ·························· 15分
事实上,令2mod cn 表示cn 除以2的余数,则
2mod cn+7 = 2mod(cn+6 + cn+4 +1) = 2mod(cn+5 + cn+3 + cn+4 + 2)
= 2mod(2cn+4 + cn+2 + cn+3 + 3) = 2mod(cn+2 +1+ cn+3 )
= 2mod(2cn+2 + cn + 2) = 2mod(cn )
所以数列{2mod cn}的周期为7 . ················································· 16分
又 2025 = 7×289+ 2 ,所以2mod c2025 = 2 mod c2 =1
所以c2025 1能被2整除,命题得证. ················································ 17分
高三数学答案(第 5 页,共 5 页)
同课章节目录