课件17张PPT。北师大版九年级数学(上)第六章
6.1反 比 例 函 数
你还知道什么叫做函数吗?函数的定义 一般地,在某个变化过程中,有两个变量x、y,如果对于x在某一范围内的每一个确定的值y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。 还记得一次函数是怎么样的一种函数吗?一次函数的一般表达式:
y=kx+b(k≠0,k,b为常数)
注:当b=0时,形如y=kx(k≠0)是正比例函数课前回顾1.知识目标:
(1)从现实情境和已有的知识经验出 发,讨论两个变量之间的关系,加深对函数概念的理解.
? (2)经历抽象反比例函数概念的过程, 领会反比例函数的意义,理解反比例函数的概念.2.技能目标:
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式. 3.情感目标:
在抽象反比例函数概念的过程,进一步渗透类比、归纳、对应、函数、转化等数学思想方法,发展学生的数学思维,同时进一步体验数学学习活动与人们生活的密切联系性. 教学目标换零钱现有一张100元的人民币,如果把它换成50元的人民币,可得几张?换成20元的人民币可得几张?10元的、5元的、1元的呢?251020100请大家观察图表:每张的面值x与兑换的张数y之间的关系是怎样的?xy=100探究新知 朝阳到沈阳全程340km。一辆虎跃车从朝阳开往沈阳。快客行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?变量t是v的函数,每一个v值都有唯一的t值和他对应
生活中的数学一般地,如果两个变量x,y之间的关系可以表示成
的形式,那么称y是x的反比例函数。(k称为比例系数)反比例函数的自变量x,函数y的值都不能是0想一想,反比例函数还有那些表现形式?反比例函数的实质是自变量x与函数值y之积是一个不为0的常数1.在下列函数表达式中,x均为自变量,哪些y是x的反比例函数?每一个反比例函数相应的k值是多少?
√√√√√××××小试身手练一练2.下列数表中分别给出了变量y与x之间的对应关系,其中是反比例函数关系的是( )DABCD3.如果函数 是反比例函数,那么m的值是 .
4.当m= 时,函数 是反比例函数 -1-2利用概念解题拓展提升1.我市有1000千米的公路要修,某工程队每天修x千米,共用y天修完,那么y与x的函数关系式为
解:
2.单元测试中某班总分为5000分,则平均分y(分)与全班人数x(人)之间的函数关系为
解:解:由反比例函数的定义得:
思考题解:设则因为,当x=2时,y=-6;当x=1时,y=3;带入y带入得:解得小结:学习本课你有什么收获?两个相关联的量,一个量变化,另一个量也随着变化,如果两个变量的积是一个不为零的常数,我们就说这两个变量成反比例。作业课本,知识技能1,2,3
好课堂堂练66页习题5.1全做完谢谢指导,再见!