中考数学备考指南专题21:规律探究解析(难) PDF,含教师版

文档属性

名称 中考数学备考指南专题21:规律探究解析(难) PDF,含教师版
格式 zip
文件大小 2.5MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-01-15 11:20:44

文档简介

深圳市洪飞市名师工作室团队&罗湖区初中数学中考研究团队联合编辑
专题21
规律探究解析(难)
1.(滨河实验中学周玉华供题)育红中学八五班的数学社团在做如下的探究活动:在平面直
角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向
右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A,
第2次移动到点A,…第n次移动到点A,则△0A,A的面积是一·
A1
Ag10
413
43
A7
A11
412
【解答】解:由题意可得:OA4n=2n,
.2021÷4=505…1,
0A2020=2×505=1010,
.A2A2021=1010-1=1009,
则△0A420m1的面积为号×1×1009=1009
2
故答案为:
1009
2
2.(翠园初级中学陈静供题)如图,在平面直角坐标系中,半径均为1个单位长度的半圆
01,02,03,·,组成一条平滑的曲线,点P从原点0出发,沿这条曲线向右运动,速
度为每秒2个单位长度,则第2019秒时,点P的坐标是
第4题图
【解析】,圆的半径都为1,∴半圆的周长=π,以时间为点P的下标.观察发现规律:
P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),,∴.P4n(4n,0),
P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1)..2019÷4=504..3,.
第2019秒时,点P的坐标为(2019,一1).
3.(翠园文锦辜靖晶供题)相传古印度一座梵塔圣殿中铸有一片巨大的黄铜板,之上树立
了3根宝石柱,其中一根宝石柱上插有中心有孔的64个大小两两相异的1寸厚的金盘,
小金盘压着较大的金盘.如图,把这些金盘全部一个一个地从1柱移动到3柱上去,移
-1294.
深圳市洪飞市名师工作室团队&罗湖区初中数学中考研究团队联合编辑
动过程中不允许大金盘压小金盘,不得把金盘放到柱子之外,
[问题提出]如果将这64个金盘按上述要求全部从1柱移动到3柱,至少需要移动多少次?
设h(n)是把n个金盘从1柱移动到3柱过程中的最少移动次数.
[问题探究]
探究一:当n=1时,显然h(1)=1.
探究二:当n=2时,如图①
探究三:当n=3时,如图②.
h

1柱2柱3柱
1柱2柱3柱
1柱2柱3柱

小金盘+2柱
1柱2柱3柱
大金盘+3柱
小金盘从2柱+3柱
需移动1次)
(需移动1次)
【需移动1次)完成
图①

1柱2柱3柱
1柱2柱3柱
1柱2柱3柱
1柱2柱3柱
先用(2)的方法把小、
再将大金盘+3柱
最后再用(2)的方
中两金盘移动到2柱
(需移动1次)
法把小、中两金盘
(需移动3次)
从2柱→3柱(需移
动3次)完成
图@
(1)探究四:当n=4时,先用h(3)的方法把较小的3个金盘移动到2柱,再将最大金
盘移动到3柱,最后再用h(3)的方法把较小的3个金盘从2柱移动到3柱,完成,即
h(4)=
(直接写出结果).
(2)[初级模型]若将x个金盘按要求全部从1柱移动到3柱,至少需要移动a次:将(x+1)
个金盘按要求全部从1柱移动到3柱,至少需要移动
次(用含a的代数式表示).
(3)[自主探究]仿照“问题探究”中的方法,将6个金盘按要求全部从1柱移动到3柱,
至少需要多少次?(写出必要的计算过程.)
(4)[最终模型]综合收集到的数据探索规律可知:将64个金盘按上述要求全部从1柱移动
到3柱,至少需要移动

(⑤)[问题变式]若在原来条件的基础上,再添加1个条件:每次只能将金盘向相邻的柱子
移动(即:2柱的金盘可以移动到1柱或3柱,但1柱或3柱的金盘只能移动到2柱),
则移动完64个金盘至少需要移动

-1295.罗湖区初中数学中考研究团队&深圳市洪飞市名师工作室团队联合编辑
专题21
规律探究解析(难)
1.(滨河实验中学周玉华供题)育红中学八五班的数学社团在做如下的探究活动:在平面
直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、
向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点
A,第2次移动到点A…第n次移动到点A,则△OAA1的面积是
A1
A5
A9410
413
43
A7
411
412
2.(翠园初级中学陈静供题)如图,在平面直角坐标系中,半径均为1个单位长度的半
圆01,02,03,…,组成一条平滑的曲线,点P从原点0出发,沿这条曲线向右运动,
速度为每秒2个单位长度,则第2019秒时,点P的坐标是
第4题图
3.(翠园文锦辜靖晶供题)相传古印度一座梵塔圣殿中铸有一片巨大的黄铜板,之上树立
了3根宝石柱,其中一根宝石柱上插有中心有孔的64个大小两两相异的1寸厚的金盘,
小金盘压着较大的金盘.如图,把这些金盘全部一个一个地从1柱移动到3柱上去,移
动过程中不允许大金盘压小金盘,不得把金盘放到柱子之外
[问题提出]如果将这64个金盘按上述要求全部从1柱移动到3柱,至少需要移动多少次?
设h(n)是把n个金盘从1柱移动到3柱过程中的最少移动次数
[问题探究]
探究一:当n=1时,显然h(1)=1.
探究二:当n=2时,如图①.
探究三:当n=3时,如图②.
.542
罗湖区初中数学中考研究团队&深圳市洪飞市名师工作室团队联合编辑

1柱2柱3柱
1柱2柱3柱
1柱2柱3柱

小金盘+2柱
大金盘+3柱
1柱2柱3柱
小金盘从2柱+3柱
需移动1次)
(需移动1次)
(需移动1次)完成
图①

1柱2柱3柱
1柱2柱3柱
1柱2柱3柱
1柱2柱3柱
先用(2)的方法把小、
再将大金盘+3柱
最后再用(2)的方
中两金盘移动到2柱
(需移动1次)
法把小、中两金盘
(需移动3次)
从2柱+3柱(需移
动3次)完成
图②
(1)探究四:当n=4时,先用h(3)的方法把较小的3个金盘移动到2柱,再将最大金
盘移动到3柱,最后再用h(3)的方法把较小的3个金盘从2柱移动到3柱,完成,即
h(4)=
(直接写出结果).
(2)[初级模型]若将x个金盘按要求全部从1柱移动到3柱,至少需要移动a次;将(x+1)
个金盘按要求全部从1柱移动到3柱,至少需要移动次(用含a的代数式表示).
(3)[自主探究]仿照“问题探究”中的方法,将6个金盘按要求全部从1柱移动到3柱,
至少需要多少次?(写出必要的计算过程.)
(4)[最终模型]综合收集到的数据探索规律可知:将64个金盘按上述要求全部从1柱移动
到3柱,至少需要移动
次.
(⑤)[问题变式]若在原来条件的基础上,再添加1个条件:每次只能将金盘向相邻的柱子
移动(即:2柱的金盘可以移动到1柱或3柱,但1柱或3柱的金盘只能移动到2柱),
则移动完64个金盘至少需要移动
次.
-543-
同课章节目录