1教学目标
1、经历探索整式乘法运算法则的过程,进一步体会类比方法的作用,以及乘法分配律在整式乘法运算中的作用。
2、能借助图形解释整式乘法的法则,发展几何直观。
3、能进行简单的整式乘法运算,发展运算能力。
2学情分析
在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,同时在前面几节课又学习了同底数幂的乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础.对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,帮助学生提高认识.学生在小学及七年级上的学习中,受到了较好的运算能力训练,能够独立完成计算活动,并具有一定的将实际问题转化为数学问题,通过计算解决实际问题的能力.本单元共分3课时,由浅入深地学习单项式乘单项式、单项式乘多项式、多项式乘多项式,三节课的知识环环相扣,每节课新知识的学习既是对前一节所学知识的应用,也为后一节学习奠定基础.所以在教学时要注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知为已知,形成较完整的知识结构.
3重点难点
1、重点:整式的乘法法则及其应用。
2、难点:理解整式的乘法法则及其探索过程,单项式的系数的符号是负时的情况,多项式乘法法则的几何解释与代数推理,并能灵活的进行整式乘法的运算。
学时重点
多项式与多项式相乘的法则及应用。
学时难点
多项式乘法法则的几何解释与代数推理,并能灵活的进行整式乘法的运算。
教学活动
活动1【讲授】整式的乘法(三)---多项式乘以多项式
第一环节:前置诊断:
1、复习提问:
1、单项式乘以多项式的依据是什么?
2、如何进行单项式与多项式乘法的运算?
3、进行单项式与多项式乘法运算时,要注意一些什么
2、计算:
(1)(3mn)2(m2+mn-n2)(2)2a2-a(2a-5b)
第二环节:创设情境,自然引入
拼图游戏:
利用如下长方形卡片拼成更大的长方形
mm aa
研究一、任选两张长方形卡片拼成更大的长方形,看谁的方法多,并用两种方法求出你拼出的大长方形的面积?
研究二、任意选三张长方形卡片拼成更大的长方形,你能拼出来吗?
研究三、你能用四张长方形卡片拼成一个更大的长方形吗?看谁拼的快,并用多种方法求出你拼出的大长方形的面积?
用不同的形式表示所拼图形的面积
学生独立思考后,全班交流,有多种方法,主要产生了两种解法:
方法一:长方形的长为(m+a),宽为(n+b),所以面积可以表示为:(m+a)(n+b)
方法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为mn,mb,an,ab,所以长方形的面积可以表示为:mn+mb+an+ab
由于求的是同一个长方形的面积,于是我们得到:
(m+a)(n+b)=mn+mb+an+ab
(1)用长方形的面积法,理解多项式乘多项式的公式展开。
(m+a)(n+b)=mn+mb+an+ab
(2)用单项式乘多项式理解公式展开
在(m+a)x=mx+ax中,将等号两端的x换成(n+b)则有:
(m+a)(n+b)=m(n+b)+a(n+b)=mn+mb+an+ab
这个结果还可以从下面的图中反映出来
(3)用连线法理解公式:
多项式的乘法:(m+a)(n+b)=mn+mb+an+ab
学会连一连:(a+b)(x–y)=ax-ay+bx-by
第三环节:设问质疑,探究尝试
教师引导学生观察(m+a)(n+b)=mn+mb+an+ab这个等式,并启发性的提出问题:
1、观察这个算式(m+a)(n+b)=mn+mb+an+ab,你能说说如何进行多项式与多项式相乘的运算?
2、归纳总结多项式与多项式相乘的运算法则.
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
第四环节:目标导向,应用新知
考考你
比一比看谁做的又快又对:
(a+b+c)(d+e+f)=
例3计算:(1)(1-x)(0.6-x)(2)(2x+y)(x-y)
第五环节:变式训练
1、计算:
(1)(m+2n)(m-2n)(2)(2n+5)(n-3)
(3)(x+2y)2(4)(ax+b)(cx+d)
注意!计算(x+2y)2应该这样做(x+2y)2=(x+2y)(x+2y)
=x2+2xy+2xy+4y2
=x2+4xy+4y2
切记:一般情况下(x+2y)2不等于x2+4y2.
第六环节:巩固提高
练习一、计算:(1)(2n+6)(n–3);(2)(2x+3)(3x–1);
(3)(2x+5)(2x+5).
练习二、计算:(1)(2a–3b)(a+5b);
(2)(3a–2)(a–1)–(a+1)(a+2);
注意!(2)(3a–2)(a–1)–(a+1)(a+2)是多项式的积与积的差,后两个多项式乘积的展开式要用括号括起来。
第七环节:小结:
多项式乘多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
注意:进行多项式与多项式乘法运算时,要注意一些什么
(1)要有序地逐项相乘,
(2)不能漏乘,
(3)注意项的符号.
(4)最后的计算结果要化简-----合并同类项.
作业:P19习题1.8知识技能:第1题