中小学教育资源及组卷应用平台
2025年人教版数学中考一轮复习29个单元核心素养检测试卷(全国通)
23 旋转单元重点难点必考点素养达标检测试卷
(答题时间90分钟,试卷满分120分)
一、选择题(本大题有10个小题,每小题3分,共30分)
1. (2024北京市)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】B
【解析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.
【详解】A、是中心对称图形,但不是轴对称图形,故不符合题意;
B、既是轴对称图形,也是中心对称图形,故符合题意;
C、不是轴对称图形,也不是中心对称图形,故不符合题意;
D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.
2. (2023湖北荆州)如图,直线分别与轴,轴交于点,,将绕着点顺时针旋转得到,则点的对应点的坐标是( )
A. B. C. D.
【答案】C
【解析】先根据一次函数解析式求得点的坐标,进而根据旋转的性质可得,,,进而得出,结合坐标系,即可求解.
∵直线分别与轴,轴交于点,,
∴当时,,即,则,
当时,,即,则,
∵将绕着点顺时针旋转得到,
又∵
∴,,,
∴,
延长交轴于点,则,,
∴,
故选:C.
【点睛】考查一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.
3. 如图,在中,,将以点为中心逆时针旋转得到,点在边上,交于点.下列结论:①;②平分;③,其中所有正确结论的序号是( )
A. ①② B. ②③ C. ①③ D. ①②③
【答案】D
【解析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.
∵将以点为中心逆时针旋转得到,
∴,
,
,
,故①正确;
,
,
,
,
,
平分,故②正确;
,
,
,
,
,
,
故③正确
故选D
【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.
4. (2023内蒙古通辽)如图,将绕点A逆时针旋转到,旋转角为,点B的对应点D恰好落在边上,若,则旋转角的度数为( )
A. B. C. D.
【答案】C
【解析】先求出,再利用旋转的性质求出,,然后利用等边对等角求出,最后利用三角形的内角和定理求解即可.
如图,
,
∵,
∴,
∵,
∴,
∵旋转,
∴,,
∴,
∴,
即旋转角的度数是.
故选:C.
【点睛】考查了旋转的性质,等腰三角形的性质,三角形内角和定理等,掌握等边对等角是解题的关键.
5. 如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,、交于点.若,则的度数是(用含的代数式表示)( )
A. B. C. D.
【答案】C
【解析】根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.
∵将绕点顺时针旋转得到,且
∴BC=DC,∠ACE=α,∠A=∠E,
∴∠B=∠BDC,
∴,
∴,
∴,
.
【点睛】本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.
6. 如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为( )
A. B. C. D.
【答案】C
【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得,可得,,从而,即可解得.
【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:
∵CD⊥x轴,CE⊥y轴,
∴∠CDO=∠CEO=∠DOE=90°,
∴四边形EODC是矩形,
∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,
∴AB=AC,∠BAC=60°,
∴△ABC是等边三角形,
∴AB=AC=BC,
∵A(0,2),C(m,3),
∴CE=m=OD,CD=3,OA=2,
∴AE=OE OA=CD OA=1,
∴,
在Rt△BCD中,,
在Rt△AOB中,,
∵OB+BD=OD=m,
∴,
化简变形得:3m4 22m2 25=0,
解得:或(舍去),
∴,故C正确.
故选:C.
【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.
7. 如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是( )
A. B. ,
C. D.
【答案】D
【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D.
【详解】A.∵将△ABC绕点C顺时针旋转60°得到△DEC,
∴∠BCE=∠ACD=60°,CB=CE,
∴△BCE是等边三角形,
∴BE=BC,故A正确;
B.∵点F是边AC中点,
∴CF=BF=AF=AC,
∵∠BCA=30°,
∴BA=AC,
∴BF=AB=AF=CF,
∴∠FCB=∠FBC=30°,
延长BF交CE于点H,则∠BHE=∠HBC+∠BCH=90°,
∴∠BHE=∠DEC=90°,
∴BF//ED,
∵AB=DE,
∴BF=DE,故B正确.
C.∵BF∥ED,BF=DE,
∴四边形BEDF是平行四边形,
∴BC=BE=DF,
∵AB=CF, BC=DF,AC=CD,
∴△ABC≌△CFD,
∴,故C正确;
D.∵∠ACB=30°, ∠BCE=60°,
∴∠FCG=30°,
∴FG=CG,
∴CG=2FG.
∵∠DCE=∠CDG=30°,
∴DG=CG,
∴DG=2FG.故D错误.
故选D.
【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.
8. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A. B. C. D.
【答案】A
【解析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.
由题意将点P向下平移5个单位,再向左平移4个单位得到P1.
∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).
∵P1与P2关于原点对称,∴P2(2.8,3.6).
点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
9. (2024北京市)如图,在菱形中,,为对角线交点.将菱形绕点逆时针旋转得到菱形,两个菱形的公共点为,,,.对八边形给出下面四个结论:
①该八边形各边长都相等;
②该八边形各内角都相等;
③点到该八边形各顶点的距离都相等;
④点到该八边形各边所在直线的距离都相等。
上述结论中,所有正确结论的序号是( )
A. ①③ B. ①④ C. ②③ D. ②④
【答案】B
【解析】根据菱形,,则,,结合旋转的性质得到点一定在对角线上,且,,继而得到,,结合,继而得到,可证,,同理可证,证,继而得到,得到,可以判定该八边形各边长都相等,故①正确;根据角的平分线的性质定理,得点到该八边形各边所在直线的距离都相等,可以判定④正确;根据题意,得,结合,,得到,可判定②该八边形各内角不相等;判定②错误,证,进一步可得,可判定点到该八边形各顶点的距离都相等错误即③错误,解答即可.
本题考查了旋转的性质,菱形的性质,三角形全等判定和性质,角的平分线性质定理,熟练掌握旋转的性质,菱形的性质,三角形全等判定和性质是解题的关键.
【详解】向两方分别延长,连接,
根据菱形,,则,,
∵菱形绕点逆时针旋转得到菱形,
∴点一定在对角线上,且,,
∴,,
∵,
∴,
∴,,同理可证,
∵,
∴,
∴,
∴,
∴该八边形各边长都相等,
故①正确;
根据角的平分线的性质定理,得点到该八边形各边所在直线的距离都相等,
∴④正确;
根据题意,得,
∵,,
∴,
∴该八边形各内角不相等;
∴②错误,
根据,
∴,
∴,
∵,
故,
∴点到该八边形各顶点的距离都相等错误
∴③错误,
故选B.
10. (2024湖北省)平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为( )
A. B. C. D.
【答案】B
【解析】本题考查坐标系下的旋转.过点和点分别作轴的垂线,证明,得到,,据此求解即可.
【详解】过点和点分别作轴的垂线,垂足分别为,
∵点的坐标为,
∴,,
∵将线段绕点顺时针旋转得到,
∴,,
∴,
∴,
∴,,
∴点的坐标为,
故选:B.
二、填空题(本大题有10个小题,每空3分,共33分)
1. (2023湖北黄冈)如图,已知点,点B在y轴正半轴上,将线段绕点A顺时针旋转到线段,若点C的坐标为,则_______.
【答案】
【解析】在x轴上取点D和点E,使得,过点C作于点F,在中,解直角三角形可得,,再证明,则,,求得,在中,得,,得到,解方程即可求得答案.
【详解】在x轴上取点D和点E,使得,过点C作于点F,
∵点C的坐标为,
∴,,
在中,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,,
∵点,
∴,
∴,
在中,
∴,
∴,
∵,
∴,
解得,
故答案为:
【点睛】此题考查了全等三角形的判定和性质、解直角三角形、旋转的性质等知识,构造三角形全等是解题的关键.
2. (2023湖南郴州) 如图,在中,,,.将绕点逆时针旋转,得到,若点的对应点恰好落在线段上,则点的运动路径长是______cm(结果用含的式子表示).
【答案】
【解析】由于旋转到,故C的运动路径长是的圆弧长度,根据弧长公式求解即可.
以A为圆心作圆弧,如图所示.
直角中,,则,
则.
∴.
由旋转性质可知,,又,
∴是等边三角形.
∴.
由旋转性质知,.
故弧的长度为:;
故答案为:
【点睛】本题考查了含角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C点的运动轨迹.
3. 一副三角板按图1放置,O是边的中点,.如图2,将绕点O顺时针旋转,与相交于点G,则的长是________.
【答案】
【解析】【分析】BC交EF于点N,由题意得,,,,,BC=DF=12,根据锐角三角函数即可得DE,FE,根据旋转的性质得是直角三角形,根据直角三角形的性质得,即,根据角之间的关系得是等腰直角三角形,即cm,根据,得,即,解得,即可得.
【详解】解:如图所示,BC交EF于点N,
由题意得,,,,,BC=DF=12,
在中,,
,
∵△ABC绕点O顺时针旋转60°,
∴,
∴,
∴,
∴是直角三角形,
∴(cm),
∴(cm),
∵,
∴,
∴是直角三角形,
∴,
∴是等腰直角三角形,
∴cm,
∵,,
∴,
即,
,
,
∴(cm),
故答案为:.
【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.
4. 已知是直角三角形,连接以为底作直角三角形且是边上的一点,连接和且则长为______.
【答案】
【解析】【分析】将线段绕点顺时针旋转,得到线段,连接,HE,利用证明,得,,则,即可解决问题.
将线段绕点顺时针旋转,得到线段,连接,HE,
是等腰直角三角形,
又是等腰直角三角形,
,,,
,
,,
,
,
,
,
,
,
故答案为:.
【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.
5. (2023辽宁本溪)如图,线段,点是线段上的动点,将线段绕点顺时针旋转得到线段,连接,在的上方作,使,点为的中点,连接,当最小时,的面积为___________.
【答案】
【解析】连接,交于点P,由直角三角形的性质及等腰三角形的性质可得垂直平分,为定角,可得点F在射线上运动,当时,最小,由含30度角直角三角形的性质即可求解.
【详解】连接,交于点P,如图,
∵,点为的中点,
∴,
∵,
∴,
∴是等边三角形,
∴;
∵线段绕点顺时针旋转得到线段,
∴,
∵,
∴垂直平分,,
∴点F在射线上运动,
∴当时,最小,
此时,
∴;
∵,
∴,
∴,
∵,
∴由勾股定理得,
∴,
∴;
故答案为:.
【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.
6. (2023内蒙古包头)如图,在中,,将绕点A逆时针方向旋转,得到.连接,交于点D,则的值为________.
【答案】5
【解析】过点D作于点F,利用勾股定理求得,根据旋转的性质可证、是等腰直角三角形,可得,再由,得,证明,可得,即,再由,求得,从而求得,,即可求解.
【详解】过点D作于点F,
∵,,,
∴,
∵将绕点A逆时针方向旋转得到,
∴,,
∴是等腰直角三角形,
∴,
又∵,
∴,
∴是等腰直角三角形,
∴,
∵,即,
∵ ,,
∴,
∴,即,
又∵,
∴,
∴,,
∴,
故答案为:5.
【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.
7. 如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心将绕点D顺时针旋转与恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若,则______.
【答案】
【解析】通过∠DFQ=∠DAQ=45°证明A、F、Q、D四点共圆,得到∠FDQ=∠FAQ=45°,∠AQF=∠ADF,利用等角对等边证明BQ=DQ=FQ=EQ,并求出,通过有两个角分别相等的三角形相似证明,得到,将BQ代入DE、FQ中即可求出.
【详解】连接PQ,
∵绕点D顺时针旋转与完全重合,
∴DF=DE,∠EDF=90°,,
∴∠DFQ=∠DEQ=45°,∠ADF=∠CDE,
∵四边形ABCD是正方形,AC是对角线,
∴∠DAQ=∠BAQ=45°,
∴∠DFQ=∠DAQ=45°,
∴∠DFQ、∠DAQ是同一个圆内弦DQ所对的圆周角,
即点A、F、Q、D在同一个圆上(四点共圆),
∴∠FDQ=∠FAQ=45°,∠AQF=∠ADF,
∴∠EDQ=90°-45°=45°,∠DQE=180°-∠EDQ-∠DEQ=90°,
∴FQ=DQ=EQ,
∵A、B、C、D是正方形顶点,
∴AC、BD互相垂直平分,
∵点Q对角线AC上,
∴BQ=DQ,
∴BQ=DQ=FQ=EQ,
∵∠AQF=∠ADF, ∠ADF=∠CDE,
∴∠AQF=∠CDE,
∵∠FAQ=∠PED=45°,
∴,
∴,
∴,
∵BQ=DQ=FQ=EQ,∠DQE=90°,
∴,
∴,
∴,
故答案为:.
【点睛】本题综合考查了相似三角形、全等三角形、圆、正方形等知识,通过灵活运用四点共圆得到等弦对等角来证明相关角相等是解题的巧妙方法.
8.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为 .
【答案】6﹣2.
【解析】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,利用勾股定理计算出AE═2,再根据旋转的性质得到AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,于是可判断点G在CB的延长线上,接着证明FA平分∠GAD得到FN=FM=4,然后利用面积法计算出GF,从而计算CG﹣GF就可得到CF的长.
【解答】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,
∵正方形ABCD的边长为4,点E是CD的中点,
∴DE=2,
∴AE==2,
∵△ADE绕点A顺时针旋转90°得△ABG,
∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,
而∠ABC=90°,
∴点G在CB的延长线上,
∵AF平分∠BAE交BC于点F,
∴∠1=∠2,
∴∠2+∠4=∠1+∠3,即FA平分∠GAD,
∴FN=FM=4,
∵AB GF=FN AG,
∴GF==2,
∴CF=CG﹣GF=4+2﹣2=6﹣2.
故答案为6﹣2.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
9.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF= .
【答案】
【解析】由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.
由旋转的性质可得AE=AB=3,AC=AF=2,
∵∠B+∠BAC=90°,且α+β=∠B,
∴∠BAC+α+β=90°
∴∠EAF=90°
∴EF==
故答案为:
【点评】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.
10. (2023湖南怀化)在平面直角坐标系中,为等边三角形,点A的坐标为.把按如图所示的方式放置,并将进行变换:第一次变换将绕着原点O顺时针旋转,同时边长扩大为边长的2倍,得到;第二次旋转将绕着原点O顺时针旋转,同时边长扩大为,边长的2倍,得到,….依次类推,得到,则的边长为__________,点的坐标为__________.
【答案】 ①. ②.
【解析】根据旋转角度为,可知每旋转6次后点又回到轴的正半轴上,故点在第四象限,且,即可求解.
∵为等边三角形,点A的坐标为,
∴,
∵每次旋转角度为,
∴6次旋转,
第一次旋转后,在第四象限,,
第二次旋转后,在第三象限,,
第三次旋转后,在轴负半轴,,
第四次旋转后,在第二象限,,
第五次旋转后,在第一象限,,
第六次旋转后,在轴正半轴,,
……
如此循环,每旋转6次,点的对应点又回到轴正半轴,
∵,
点在第四象限,且,
如图,过点作轴于,
在中,,
∴,
,
∴点的坐标为.
故答案为:,.
【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.
三、解答题(5个小题,共57分)
1. (9分) (2023龙东)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,.
(1)将向上平移4个单位,再向右平移1个单位,得到,请画出.
(2)请画出关于轴对称的.
(3)将着原点顺时针旋转,得到,求线段在旋转过程中扫过的面积(结果保留).
【答案】(1)见解析 (2)见解析 (3)
【解析】【分析】(1)根据平移的性质得出对应点的位置进而画出图形;
(2)利用轴对称的性质得出对应点的位置进而画出图形;
(3)画出旋转后的图形,根据即可得出答案.
【详解】(1)如图所示,即为所求;
(2)如图所示,即为所求;
(3)将着原点顺时针旋转,得到,
设所在圆交于点D,交于点E,
,,
,
,,
,
,
,,,
,
故线段在旋转过程中扫过的面积为.
【点睛】本题考查平移、轴对称变换作图和旋转的性质以及扇形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
2. (10分) (2024北京市)已知,点,分别在射线,上,将线段绕点顺时针旋转得到线段,过点作的垂线交射线于点.
(1)如图1,当点在射线上时,求证:是的中点;
(2)如图2,当点在内部时,作,交射线于点,用等式表示线段与的数量关系,并证明。
【答案】(1)见详解 (2),理由见详解
【解析】(1)先根据等腰三角形的性质以及三角形内角和定理求得,则,故,再根据等角的余角相等即可得到,故,最后等量代换出,即点是的中点;
(2)在射线上取点H,使得,取的中点G,连接,可证明,则,,则,根据平行线的性质以及等腰三角形的性质得到,则,而,故可等量代换出.
【小问1详解】
证明:连接,
由题意得:,,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴点是的中点;
【小问2详解】
解:,
在射线上取点H,使得,取的中点G,连接,
∵,
∴,
∴,
∴,
又∵,
∴,
∴,,
∴,
∵,
∴,,
∵是的中点,
∴,,
∴,
∴,
∴,
∴,
∵,
∴,
∴.
【点睛】本题考查了旋转的性质,全等三角形的判定与性质,三角形的内角和,外角定理,平行线的性质,直角三角形的性质,熟练掌握这些知识点,正确添加辅助线是解题的关键.
3. (10分)(2023浙江宁波) 在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).
(1)在图1中先画出一个以格点P为顶点的等腰三角形,再画出该三角形向右平移2个单位后的.
(2)将图2中的格点绕点C按顺时针方向旋转,画出经旋转后的.
【答案】(1)画图见解析 (2)画图见解析
【解析】【分析】(1)先画等腰三角形,,再确定平移后的对应点,再顺次连接即可;
(2)确定A,B旋转后的对应点,而C的对应点是其本身,再顺次连接即可.
【详解】(1)解:如图,,即为所求作的三角形;
(2)如图,即为所求作的三角形,
【点睛】本题考查的是平移,旋转的作图,作等腰三角形,熟练的利用网格特点以及平移旋转的性质进行作图是解本题的关键.
4. (14分)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.
(1)如图1,若,且,,求的度数;
(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想;
(3)若,且,将沿直线翻折至所在平面内得到,点是的中点,点是线段上一点,将沿直线翻折至所在平面内得到,连接.在点,运动过程中,当线段取得最小值,且时,请直接写出的值.
【答案】(1)
(2),证明见解析
(3)
【解析】【分析】(1)在射线上取一点,使得,证明,求出,然后根据四边形内角和定理及邻补角的性质得出答案;
(2)证明,求出,倍长至,连接,PQ,证明,求出,在CF上截取FP=FB,连接BP,易得为正三角形,然后求出,证,可得PQ=PC,∠QPF=∠CPB=60°,则可得为正三角形,然后由得出结论;
(3)根据可知轨迹为如图3-1中圆弧,O为所在圆的圆心,此时AO垂直平分BC,当、、三点共线时,取得最小值,设,解直角三角形求出PL、PH,再用面积法求出PQ计算即可.
【详解】(1)解:如图1,在射线上取一点,使得,
∵,BC=BC,
∴(SAS),
∴,
∴,
∴,
∴,
∵,
∴,
∴;
(2),
证明:∵,,
∴△ABC是正三角形,
∴AB=BC=AC,∠A=∠DBC=60°,
又∵,
∴(SAS),
∴,
∴,
∴,
倍长至,连接,PQ,
∵CN=QN,∠QNF=∠CNM,NF=NM,
∴(SAS),
∴,∠QFN=∠CMN,
由旋转的性质得AC=CM,
∴,
在CF上截取FP=FB,连接BP,
∵,
∴,
∴为正三角形,
∴∠BPF=60°,,
∴,
∵∠QFN=∠CMN,
∴FQ∥CM,
∴,
∴,
又∵,
∴(SAS),
∴PQ=PC,∠QPF=∠CPB=60°,
∴为正三角形,
∴,即;
(3)由(2)知,
∴轨迹为如图3-1中圆弧,O为所在圆的圆心,此时AO垂直平分BC,
∴、、三点共线时,取得最小值,
∵∠PAO=∠PAB+∠BAO=90°,
∴,
∴,
∵,
∴,
如图3-2,作HL⊥PK于L,
设,
在Rt△HLP中,,即,
∴,
∴,,
设PQ与HK交于点R,则HK垂直平分PQ,
∵S△PHK=,
∴,
∴,
∴,
∵BC=AP=2,
∴.
【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,旋转的性质,平行线的性质,圆的基本性质,解直角三角形,勾股定理等知识,综合性较强,能够作出合适的辅助线是解题的关键.
5. (14分)(2024广西)如图1,△ABC中,∠B=90°,AB=6.AC的垂直平分线分别交AC,AB于点M,O,CO平分∠ACB.
(1)求证:;
(2)如图2,将绕点O逆时针旋转得到,旋转角为.连接,
①求面积的最大值及此时旋转角的度数,并说明理由;
②当是直角三角形时,请直接写出旋转角的度数.
【答案】(1)见解析 (2)①,;②或
【解析】【分析】(1)利用线段垂直平分线的性质得出,利用等边对等角得出,结合角平分线定义可得出,最后根据相似三角形的判定即可得证;
(2)先求出,然后利用含的直角三角形性质求出,,,利用勾股定理求出,,取中点,连接,,作于N,由旋转的性质知,为旋转所得线段,则,,,根据点到直线的距离,垂线段最短知,三角形三边关系得出,故当M、O、三点共线,且点O在线段时,取最大值,最大值为,此时,最后根据三角形面积公式求解即可;
②先利用三角形三边关系判断出,,则当为直角三角形时,只有,然后分A和重合,和C重合,两种情况讨论即可.
小问1详解】
证明:∵垂直平分,
∴,
∴,
∵平分
∴,
∴,
又;
∴;
【小问2详解】
解:①∵∠B=90°
∴,
∴,
∴,
又,
∴,,
∵垂直平分,
∴,,
∴,
∴,
取中点,连接,,作于N,
由旋转的性质知,为旋转所得线段,
∴,,,
根据垂线段最短知,
又,
∴当M、O、三点共线,且点O在线段时,取最大值,最大值为,
此时,
∴面积的最大值为;
②∵,,
∴,
同理
∴为直角三角形时,只有,
当A和重合时,如图,
∵
∴,,
∴,
∵,
∴,
∴,
∴、O、M三点共线,
∴为直角三角形,
此时旋转角;
当和C重合时,如图,
同理,,
∴,
∵,
∴,
∴,
∴、O、M三点共线,
又
∴为直角三角形,
此时旋转角;
综上,旋转角的度数为或时,为直角三角形.
【点睛】本题考查了线段垂直平分线的性质,含的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2025年人教版数学中考一轮复习29个单元核心素养检测试卷(全国通)
23 旋转单元重点难点必考点素养达标检测试卷
(答题时间90分钟,试卷满分120分)
一、选择题(本大题有10个小题,每小题3分,共30分)
1. (2024北京市)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2. (2023湖北荆州)如图,直线分别与轴,轴交于点,,将绕着点顺时针旋转得到,则点的对应点的坐标是( )
A. B. C. D.
3. 如图,在中,,将以点为中心逆时针旋转得到,点在边上,交于点.下列结论:①;②平分;③,其中所有正确结论的序号是( )
A. ①② B. ②③ C. ①③ D. ①②③
4. (2023内蒙古通辽)如图,将绕点A逆时针旋转到,旋转角为,点B的对应点D恰好落在边上,若,则旋转角的度数为( )
A. B. C. D.
5. 如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,、交于点.若,则的度数是(用含的代数式表示)( )
A. B. C. D.
6. 如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为( )
A. B. C. D.
7. 如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是( )
A. B. ,
C. D.
8. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A. B. C. D.
9. (2024北京市)如图,在菱形中,,为对角线交点.将菱形绕点逆时针旋转得到菱形,两个菱形的公共点为,,,.对八边形给出下面四个结论:
①该八边形各边长都相等;
②该八边形各内角都相等;
③点到该八边形各顶点的距离都相等;
④点到该八边形各边所在直线的距离都相等。
上述结论中,所有正确结论的序号是( )
A. ①③ B. ①④ C. ②③ D. ②④
10. (2024湖北省)平面坐标系中,点的坐标为,将线段绕点顺时针旋转,则点的对应点的坐标为( )
A. B. C. D.
二、填空题(本大题有10个小题,每空3分,共33分)
1. (2023湖北黄冈)如图,已知点,点B在y轴正半轴上,将线段绕点A顺时针旋转到线段,若点C的坐标为,则_______.
2. (2023湖南郴州) 如图,在中,,,.将绕点逆时针旋转,得到,若点的对应点恰好落在线段上,则点的运动路径长是______cm(结果用含的式子表示).
3. 一副三角板按图1放置,O是边的中点,.如图2,将绕点O顺时针旋转,与相交于点G,则的长是________.
4. 已知是直角三角形,连接以为底作直角三角形且是边上的一点,连接和且则长为______.
5. (2023辽宁本溪)如图,线段,点是线段上的动点,将线段绕点顺时针旋转得到线段,连接,在的上方作,使,点为的中点,连接,当最小时,的面积为___________.
6. (2023内蒙古包头)如图,在中,,将绕点A逆时针方向旋转,得到.连接,交于点D,则的值为________.
7. 如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心将绕点D顺时针旋转与恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若,则______.
8.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为 .
9.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF= .
10. (2023湖南怀化)在平面直角坐标系中,为等边三角形,点A的坐标为.把按如图所示的方式放置,并将进行变换:第一次变换将绕着原点O顺时针旋转,同时边长扩大为边长的2倍,得到;第二次旋转将绕着原点O顺时针旋转,同时边长扩大为,边长的2倍,得到,….依次类推,得到,则的边长为__________,点的坐标为__________.
三、解答题(5个小题,共57分)
1. (9分) (2023龙东)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,.
(1)将向上平移4个单位,再向右平移1个单位,得到,请画出.
(2)请画出关于轴对称的.
(3)将着原点顺时针旋转,得到,求线段在旋转过程中扫过的面积(结果保留).
2. (10分) (2024北京市)已知,点,分别在射线,上,将线段绕点顺时针旋转得到线段,过点作的垂线交射线于点.
(1)如图1,当点在射线上时,求证:是的中点;
(2)如图2,当点在内部时,作,交射线于点,用等式表示线段与的数量关系,并证明。
3. (10分)(2023浙江宁波) 在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).
(1)在图1中先画出一个以格点P为顶点的等腰三角形,再画出该三角形向右平移2个单位后的.
(2)将图2中的格点绕点C按顺时针方向旋转,画出经旋转后的.
4. (14分)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.
(1)如图1,若,且,,求的度数;
(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想;
(3)若,且,将沿直线翻折至所在平面内得到,点是的中点,点是线段上一点,将沿直线翻折至所在平面内得到,连接.在点,运动过程中,当线段取得最小值,且时,请直接写出的值.
5. (14分)(2024广西)如图1,△ABC中,∠B=90°,AB=6.AC的垂直平分线分别交AC,AB于点M,O,CO平分∠ACB.
(1)求证:;
(2)如图2,将绕点O逆时针旋转得到,旋转角为.连接,
①求面积的最大值及此时旋转角的度数,并说明理由;
②当是直角三角形时,请直接写出旋转角的度数.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)