中小学教育资源及组卷应用平台
2025年人教版数学中考一轮复习29个单元核心素养检测试卷(全国通)
27 相似单元重点难点必考点素养达标检测试卷
(答题时间90分钟,试卷满分120分)
一、选择题(本大题有10个小题,每小题3分,共30分)
1.(2024江苏连云港)下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为( )
A. 甲和乙 B. 乙和丁 C. 甲和丙 D. 甲和丁
2. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是( )
A.165cm B.178cm C.185cm D.190cm
3. 如图,在中,是边上的点,,,则与的周长比是( )
A. B. C. D.
4. (2024湖南省)如图,在中,点分别为边的中点.下列结论中,错误的是( )
A B. C. D.
5. 如图,在ABC中,D、E分别为线段BC、BA的中点,设ABC的面积为S,EBD的面积为S.则=( )
A. B. C. D.
6. 如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为( )
A. B. C. D.
7. 如图,与位似,点为位似中心,相似比为.若的周长为4,则的周长是( )
A. 4 B. 6 C. 9 D. 16
8.如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF的长度为( )
A. B.2 C.4 D.
9. (2023四川内江)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为( )
A. 1 B. C. 2 D. 3
10.(2023龙东) 如图,在平面直角坐标中,矩形的边,将矩形沿直线折叠到如图所示的位置,线段恰好经过点,点落在轴的点位置,点的坐标是( )
A. B. C. D.
二、填空题(本大题有10个小题,每空3分,共33分)
1. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E为边的黄金分割点,即.已知为2米,则线段的长为______米.
2. (2023广东省)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_______.
3.如图,在中,点在边上,点在边上,请添加一个条件_________,使.
4. 如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.
5. 如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是______mm.
6. (2023长春)如图,和是以点为位似中心的位似图形,点在线段上.若,则和的周长之比为__________.
7. (2023辽宁本溪)如图,在平面直角坐标系中,四边形的顶点坐标分别是,若四边形与四边形关于原点位似,且四边形的面积是四边形面积的4倍,则第一象限内点的坐标为___________.
8. (2024甘肃临夏)如图,等腰中,,,将沿其底边中线向下平移,使的对应点满足,则平移前后两三角形重叠部分的面积是______.
9.(2024湖北省) 为等边三角形,分别延长,到点,使,连接,,连接并延长交于点.若,则______,______.
10.(2021浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 .
三、解答题(6个小题,共57分)
1. (5分)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
2. (8分)(2023湖南邵阳)如图,,点是线段上的一点,且.已知.
(1)证明:.
(2)求线段的长.
3. (8分)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.
(1)求证:△BEC∽△BCH;(2)如果BE2=AB AE,求证:AG=DF.
4. (12分)(2024贵州省)综合与探究:如图,,点P在的平分线上,于点A.
(1)【操作判断】
如图①,过点P作于点C,根据题意在图①中画出,图中的度数为______度;
(2)【问题探究】
如图②,点M在线段上,连接,过点P作交射线于点N,求证:;
(3)【拓展延伸】
点M在射线上,连接,过点P作交射线于点N,射线与射线相交于点F,若,求的值.
5.(12分)(2023湖北黄冈)【问题呈现】
和都是直角三角形,,连接,,探究,的位置关系.
(1)如图1,当时,直接写出,的位置关系:____________;
(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.
6. (12分) (2024黑龙江齐齐哈尔)综合与实践:如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在中,,将线段绕点顺时针旋转得到线段,作交的延长线于点.
(1)【观察感知】如图2,通过观察,线段与的数量关系是______;
(2)【问题解决】如图3,连接并延长交的延长线于点,若,,求的面积;
(3)【类比迁移】在(2)的条件下,连接交于点,则______;
(4)【拓展延伸】在(2)的条件下,在直线上找点,使,请直接写出线段的长度.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2025年人教版数学中考一轮复习29个单元核心素养检测试卷(全国通)
27 相似单元重点难点必考点素养达标检测试卷
(答题时间90分钟,试卷满分120分)
一、选择题(本大题有10个小题,每小题3分,共30分)
1.(2024江苏连云港)下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为( )
A. 甲和乙 B. 乙和丁 C. 甲和丙 D. 甲和丁
【答案】D
【解析】本题考查相似图形,根据对应角相等,对应边对应成比例的图形是相似图形结合正方形的性质,进行判断即可.
由图可知,只有选项甲和丁中的对应角相等,且对应边对应成比例,它们的形状相同,大小不同,是相似形.
故选D.
2. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是( )
A.165cm B.178cm C.185cm D.190cm
【答案】B
【解析】设某人的咽喉至肚脐的长度为xcm,则
≈0.618,
解得x≈42.072,
设某人的肚脐至足底的长度为ycm,则
≈0.618,
解得y≈110.149,
∴其身高可能是110.149÷0.618≈178(cm)。
3. 如图,在中,是边上的点,,,则与的周长比是( )
A. B. C. D.
【答案】B
【解析】先证明△ACD∽△ABC,即有,则可得,问题得解.
∵∠B=∠ACD,∠A=∠A,
∴△ACD∽△ABC,
∴,
∵,
∴,
∴,
∴△ADC与△ACB的周长比1:2,
故选:B.
【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD∽△ABC是解答本题的关键.
4. (2024湖南省)如图,在中,点分别为边的中点.下列结论中,错误的是( )
A B. C. D.
【答案】D
【解析】本题考查了三角形中位线的性质,相似三角形的判定和性质,由三角形中位线性质可判断;由相似三角形的判定和性质可判断,掌握三角形中位线的性质及相似三角形的判定和性质是解题的关键.
【详解】∵点分别为边的中点,
∴,,故正确;
∵,
∴,故正确;
∵,
∴,
∴,故错误;
故选:.
5. 如图,在ABC中,D、E分别为线段BC、BA的中点,设ABC的面积为S,EBD的面积为S.则=( )
A. B. C. D.
【答案】B
【解析】先判定,得到相似比为,再根据两个相似三角形的面积比等于相似比的平方,据此解题即可.
∵D、E分别为线段BC、BA的中点,
∴,
又∵,
∴,相似比为,
∴.
【点睛】此题考查相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.
6. 如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为( )
A. B. C. D.
【答案】B
【解析】求出△AOB和△COD相似,利用相似三角形对应边成比例列式计算求出AB,再根据外径的长度解答.
∵OA:OC=OB:OD=3,∠AOB=∠COD,
∴△AOB∽△COD,
∴AB:CD=3,
∴AB:3=3,
∴AB=9(cm),
∵外径为10cm,
∴19+2x=10,
∴x=0.5(cm).
【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB的长.
7. 如图,与位似,点为位似中心,相似比为.若的周长为4,则的周长是( )
A. 4 B. 6 C. 9 D. 16
【答案】B
【解析】根据周长之比等于位似比计算即可.
设的周长是x,
∵ 与位似,相似比为,的周长为4,
∴4:x=2:3,
解得:x=6,
故选:B.
【点睛】本题考查了位似的性质,熟练掌握位似图形的周长之比等于位似比是解题的关键.
8.如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF的长度为( )
A. B.2 C.4 D.
【答案】D
【解析】把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.
∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF==,故选:D.
【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或 k.
9. (2023四川内江)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为( )
A. 1 B. C. 2 D. 3
【答案】C
【解析】由三等分点的定义与平行线的性质得出,,,是的中位线,易证,得,解得,则.
【详解】、为边的三等分点,,
,,,
,是的中位线,
,
,
,
,即,
解得:,
,
故选:C.
【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.
10.(2023龙东) 如图,在平面直角坐标中,矩形的边,将矩形沿直线折叠到如图所示的位置,线段恰好经过点,点落在轴的点位置,点的坐标是( )
A. B. C. D.
【答案】D
【解析】首先证明,求出,连结,设与交于点F,然后求出,可得,再用含的式子表示出,最后在中,利用勾股定理构建方程求出即可解决问题.
【详解】∵矩形的边,,
∴,,,
由题意知,
∴,
又∵,
∴,
∴,
由折叠知,,
∴,
∴,即,
连接,设与交于点F,
∴,
∵,
∴四边形是矩形,
∴,,,
∴,
由折叠知,,
∴,
∵在中,,
∴,
解得:,
∴点的坐标是,
故选:D.
【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出的长是解题的关键.
二、填空题(本大题有10个小题,每空3分,共33分)
1. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E为边的黄金分割点,即.已知为2米,则线段的长为______米.
【答案】或者
【解析】根据点E是AB的黄金分割点,可得,代入数值得出答案.
∵点E是AB的黄金分割点,
∴.
∵AB=2米,
∴米.
【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.
2. (2023广东省)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_______.
【答案】15
【解析】根据正方形的性质及相似三角形的性质可进行求解.
如图,
由题意可知,,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴;
故答案为15.
【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.
3.如图,在中,点在边上,点在边上,请添加一个条件_________,使.
【答案】∠ADE=∠B(答案不唯一).
【解析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.
∵∠A=∠A,
∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B或∠AED=∠C证相似;
根据两边对应成比例且夹角相等,可添加条件证相似.
故答案为∶∠ADE=∠B(答案不唯一).
【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法.
4. 如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.
【答案】8
【解析】根据三角形中位线定理求得DE∥BC,,从而求得△ADE∽△ABC,然后利用相似三角形的性质求解.
∵D、E分别是AB、AC的中点,则DE为中位线,
所以DE∥BC,
所以△ADE∽△ABC
∴
∵S△ADE=2,
∴S△ABC=8
【点睛】本题考查中位线及平行线性质,本题难度较低,主要考查学生对三角形中位线及平行线性质等知识点的掌握.
5. 如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是______mm.
【答案】48mm
【解析】设正方形的边长为x mm,则AI=AD﹣x=80﹣x,
∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,
解得x=48 mm,∴这个正方形零件的边长是48mm.
【点睛】本题主要考查了相似三角形判定与性质的综合运用,熟练掌握相关概念是解题关键.
6. (2023长春)如图,和是以点为位似中心的位似图形,点在线段上.若,则和的周长之比为__________.
【答案】
【解析】根据位似图形的性质即可求出答案.
,
,
设周长为,设周长为,
和是以点为位似中心的位似图形,
.
.
和的周长之比为.
故答案:.
【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.
7. (2023辽宁本溪)如图,在平面直角坐标系中,四边形的顶点坐标分别是,若四边形与四边形关于原点位似,且四边形的面积是四边形面积的4倍,则第一象限内点的坐标为___________.
【答案】
【解析】根据位似图形的概念得到四边形和四边形相似,根据相似多边形的面积比等于相似比的平方求出相似比,再根据位似变换的性质计算即可.
【详解】∵四边形的面积是四边形面积的4倍,
∴四边形和四边形的相似比为,
∵,
∴第一象限内点 ,即,
故答案为:.
【点睛】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
8. (2024甘肃临夏)如图,等腰中,,,将沿其底边中线向下平移,使的对应点满足,则平移前后两三角形重叠部分的面积是______.
【答案】##
【解析】本题考查平移的性质,相似三角形的判定和性质,三线合一,根据平移的性质,推出,根据对应边上的中线比等于相似比,求出的长,三线合一求出的长,利用面积公式进行求解即可.
【详解】∵等腰中,,,
∴,
∵为中线,
∴,,
∴,,
∴,
∵将沿其底边中线向下平移,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
故答案为:.
9.(2024湖北省) 为等边三角形,分别延长,到点,使,连接,,连接并延长交于点.若,则______,______.
【答案】 ①. ##30度 ②. ##
【解析】本题考查了相似三角形的判定和性质,等边三角形的性质,勾股定理.利用三角形的外角性质结合可求得;作交的延长线于点,利用直角三角形的性质求得,,证明,利用相似三角形的性质列式计算即可求解.
【详解】解:∵为等边三角形,,
∴,,
∴,,,
作交的延长线于点,
∴,,
∵,
∴,
∴,
∴,即,
解得,
故答案为:,.
10.(2021浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 .
【答案】(4,2).
【解析】根据图示,对应点的连线都经过同一点,该点就是位似中心.
如图,
点G(4,2)即为所求的位似中心.
三、解答题(6个小题,共57分)
1. (5分)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
【答案】见解析。
【解析】 此题主要考查了位似变换和平移变换,根据题意正确得出对应点位置是解题关键.
直接利用平移的性质得出对应点位置进而得出答案;利用位似图形的性质得出对应点位置进而得出.
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).
2. (8分)(2023湖南邵阳)如图,,点是线段上的一点,且.已知.
(1)证明:.
(2)求线段的长.
【答案】(1)见解析 (2)
【解析】【分析】(1)根据题意得出,,则,即可得证;
(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.
【详解】(1)证明:∵,
∴,
∵,
∴,
∴,
∴;
(2)∵,
∴,
∵,
∴,
解得:.
【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
3. (8分)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.
(1)求证:△BEC∽△BCH;(2)如果BE2=AB AE,求证:AG=DF.
【答案】(1)证明见解析;(2)证明见解析.
【分析】(1)先证明△CDF≌△CBE,进而得到∠DCF=∠BCE,再由菱形对边CDBH,得到∠H=∠DCF,进而∠BCE=∠H即可求解.(2) 由BE2=AB AE,得到=,再利用AGBC,平行线分线段成比例定理得到=,再结合已知条件即可求解.
【详解】(1)∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,CDAB.
∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE.
∵CDBH,∴∠H=∠DCF,∴∠BCE=∠H.且∠B=∠B,∴△BEC∽△BCH.
(2)∵BE2=AB AE,∴=,∵AGBC,∴=,∴=,
∵DF=BE,BC=AB,∴BE=AG=DF,即AG=DF.
【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4. (12分)(2024贵州省)综合与探究:如图,,点P在的平分线上,于点A.
(1)【操作判断】
如图①,过点P作于点C,根据题意在图①中画出,图中的度数为______度;
(2)【问题探究】
如图②,点M在线段上,连接,过点P作交射线于点N,求证:;
(3)【拓展延伸】
点M在射线上,连接,过点P作交射线于点N,射线与射线相交于点F,若,求的值.
【答案】(1)画图见解析,90 (2)见解析 (3)或
【解析】【分析】(1)依题意画出图形即可,证明四边形是矩形,即可求解;
(2)过P作于C,证明矩形是正方形,得出,利用证明,得出,然后利用线段的和差关系以及等量代换即可得证;
(3)分M在线段,线段的延长线讨论,利用相似三角形的判定与性质求解即可;
【小问1详解】
解:如图,即为所求,
∵,,,
∴四边形是矩形,
∴,
故答案为:90;
【小问2详解】
证明:过P作于C,
由(1)知:四边形是矩形,
∵点P在的平分线上,,,
∴,
∴矩形是正方形,
∴,,
∵,
∴,
又,,
∴,
∴,
∴
;
【小问3详解】
解:①当M在线段上时,如图,延长、相交于点G,
由(2)知,
设,则,,
∴,
∵,,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴;
②当M在的延长线上时,如图,过P作于C,并延长交于G
由(2)知:四边形是正方形,
∴,,,
∵,
∴,
又,,
∴,
∴,
∴
,
∵
∴,,
∵,
∴,
∴,即,
∴,
∵,
∴,
∴,
∴,
∴;
综上,的值为或.
【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.
5.(12分)(2023湖北黄冈)【问题呈现】
和都是直角三角形,,连接,,探究,的位置关系.
(1)如图1,当时,直接写出,的位置关系:____________;
(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.
【答案】(1) (2)成立;理由见解析 (3)或
【解析】【分析】(1)根据,得出,,证明,得出,根据,求出,即可证明结论;
(2)证明,得出,根据,求出,即可证明结论;
(3)分两种情况,当点E在线段上时,当点D在线段上时,分别画出图形,根据勾股定理求出结果即可.
【详解】(1)∵,
∴,,
∵,
∴,
∴,
∴,
∴,
∵,
,
∴,
∴;
故答案为:.
(2)解:成立;理由如下:
∵,
∴,
∴,
∵,
∴,
∴,
∵,
,
∴,
∴;
(3)解:当点E在线段上时,连接,如图所示:
设,则,
根据解析(2)可知,,
∴,
∴,
根据解析(2)可知,,
∴,
根据勾股定理得:,
即,
解得:或(舍去),
∴此时;
当点D在线段上时,连接,如图所示:
设,则,
根据解析(2)可知,,
∴,
∴,
根据解析(2)可知,,
∴,
根据勾股定理得:,
即,
解得:或(舍去),
∴此时;
综上分析可知,或.
【点睛】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.
6. (12分) (2024黑龙江齐齐哈尔)综合与实践:如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在中,,将线段绕点顺时针旋转得到线段,作交的延长线于点.
(1)【观察感知】如图2,通过观察,线段与的数量关系是______;
(2)【问题解决】如图3,连接并延长交的延长线于点,若,,求的面积;
(3)【类比迁移】在(2)的条件下,连接交于点,则______;
(4)【拓展延伸】在(2)的条件下,在直线上找点,使,请直接写出线段的长度.
【答案】(1) (2)10 (3) (4)或
【解析】【分析】(1)根据旋转的性质可得,,进而证明,即可求解;
(2)根据(1)的方法证明,进而证明,求得,则,然后根据三角形的面积公式,即可求解.
(3)过点作于点,证明得出,证明,设,则,代入比例式,得出,进而即可求解;
(4)当在点的左侧时,过点作于点,当在点的右侧时,过点作交的延长线于点,分别解直角三角形,即可求解.
【小问1详解】
解:∵将线段绕点顺时针旋转得到线段,作交的延长线于点.
,
,
,
,
,
又且
,
;
【小问2详解】
解:,
,
,
,
,
又且,
,
,
,
,
,
,
,
,
,
;
【小问3详解】
解:如图所示,过点作于点,
∵,
∴
∴,
即,即,
又∵
∴
∴,
设,则,
解得:
∴;
【小问4详解】
解:如图所示,当在点的左侧时,过点作于点
∵
∴,设,则,
又∵,
∴,
∴
∴
∴
∴,
解得:
在中,
∴
∴
如图所示,当在点的右侧时,过点作交的延长线于点,
∵
∴
∵
∴
设,则,,
∵,
∴
解得:
∴
∴
综上所述,或.
【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,解直角三角形,旋转的性质,熟练掌握以上知识是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)