中小学教育资源及组卷应用平台
2025年人教版数学中考一轮复习29个单元核心素养检测试卷(全国通)
29 投影与视图单元素重点难点必考点养达标检测试卷
(答题时间90分钟,试卷满分120分)
一、选择题(本大题有10个小题,每小题3分,共30分)
1. (2024甘肃临夏)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是( )
A. 主视图和左视图完全相同 B. 主视图和俯视图完全相同
C. 左视图和俯视图完全相同 D. 三视图各不相同
【答案】D
【解析】本题考查几何体的三视图,根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看到的图形,即可得出答案.
【详解】解:该几何体的三视图各不相同,主视图的中间出有两个“耳朵”而左视图则没有;俯视图是三个同心圆(夹在中间的圆由虚线构成).
故选:D.
2.(2024广西)榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是( )
A. B. C. D.
【答案】A
【解析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.
由图可知:几何体的主视图为:
故选A.
3. (2024福建省)如图是由长方体和圆柱组成的几何体,其俯视图是( )
A. B.
C. D.
【答案】C
【解析】本题考查了简单组合体的三视图,根据从上边看得到的图形是俯视图,可得答案.
这个立体图形的俯视图是一个圆形,圆形内部中间是一个长方形.
故选:C.
4. (2023湖北天门)如图是一个立体图形的三视图,该立体图形是( )
A. 三棱柱 B. 圆柱 C. 三棱锥 D. 圆锥
【答案】D
【解析】根据主视图和左视图确定是柱体、锥体、球体,再由俯视图确定具体形状.
由主视图和左视图为三角形判断出是锥体,
根据俯视图是圆可判断出这个几何体应该是圆锥.
故选:D.
【点睛】本题考查了由物体的三种视图确定几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.
5. (2023长春)下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )
A. 面① B. 面② C. 面⑤ D. 面⑥
【答案】C
【解析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.
依题意,多面体的底面是面③,则多面体的上面是面⑤,
故选:C.
【点睛】本题考查了长方体的表面展开图,熟练掌握基本几何体的展开图是解题的关键.
6. (2024黑龙江齐齐哈尔)如图,若几何体是由5个棱长为1的小正方体组合而成的,则该几何体左视图与俯视图的面积和是( )
A. 6 B. 7 C. 8 D. 9·
【答案】B
【解析】本题考查简单组合体的三视图,根据从左面看得到的图形是左视图,从上面看的到的视图是俯视图,再根据面积的和,可得答案.
【详解】左视图:
俯视图:
∴该几何体左视图与俯视图的面积和是:
故选:B
7. 在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )
A.B.C.D.
【答案】D
【解析】根据太阳光下的影子的特点:(1)同一时刻,太阳光下的影子都在同一方向;(2)太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.
选项A、B中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A、B错误
选项C中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C错误
选项D中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D正确.
8. 下图水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )
【答案】D
【解析】杯口与投影面平行,其正投影形状大小与杯口一致。
9. (2024江苏盐城)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )
A. 湿 B. 地 C. 之 D. 都
【答案】C
【解析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.
由正方体表面展开图的特征可得:
“盐”的对面是“之”,
“地”的对面是“都”,
“湿”的对面是“城”,故选C.
10. (2024青海省)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )
A. B. C. D.
【答案】D
【解析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.
圆锥的侧面展开图是扇形.
故选:D.
二、填空题(本大题有6个小题,每空4分,共24分)
1. 数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.
【答案】12
【解析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.
设旗杆为AB,如图所示:
根据题意得:,
∴
∵米,米,米,
∴
解得:AB=12米.
故答案为:12.
【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
2.小华家客厅有一张直径为高为的圆桌有一盏灯到地面垂直距离为圆桌的影子为,则点到点的距离为_______.
【答案】4
【解析】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.
根据相似三角形的判定和性质即可得到结论.
∵AB∥CD,∴△ABE∽△CDE,∴=.
∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.
3. 某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=_______m.
【答案】9.88
【解析】根据平行投影得AC∥DE,可得∠ACB=∠DFE,证明Rt△ABC∽△Rt△DEF,然后利用相似三角形的性质即可求解.
∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.
∴AC∥DE,
∴∠ACB=∠DFE,
∵AB⊥BC,DE⊥EF,
∴∠ABC=∠DEF=90°,
∴Rt△ABC∽△Rt△DEF,
∴,即,
解得AB=9.88,
∴旗杆的高度为9.88m.
故答案为:9.88.
【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt△ABC∽△Rt△DEF是解题的关键.
4. 由若干个相同的小正方体构成的几何体的三视图如图所示,那么构成这个几何体的小正方体的个数
是______.
【答案】5
【解析】根据三视图得出这个几何体的构成情况,由此即可得.
【详解】解:由三视图可知,这个几何体的构成情况如下:(数字表示相应位置上小正方形的个数)
则构成这个几何体的小正方体的个数是,
故答案为:5.
【点睛】本题考查了三视图,熟练掌握三视图是解题关键.
5. 如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是 .
【答案】见解析。
【解析】本题主要考查由三视图到立体图形,以及立体图形的侧面展开图和扇形面积公式.
这个几何体为圆锥,底面圆的半径为,侧面展开图为扇形,扇形的半径为圆锥的母线长1,扇形的弧长为2π×=π,由扇形的面积公式S=lR得这个几何体的侧面积为S=×1×π=.
6. 如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积
为 cm2.
【答案】16π.
【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,
故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).
7.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.
【答案】4
【解析】本题主要考查了相似三角形的判定和性质的应用,也考查了平行投影,找准相似三角形是解答此题的关键.
如图,∠CPD=90°,QC=2m,QD=8m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.
如图,∠CPD=90°,QC=2m,QD=8m,
∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,
而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴即,
∴PQ=4,即旗杆的高度为4m.故答案为4.
8.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是 .(填“图1”或“图2”)
【答案】图2.
【解析】图1中的人的影子比较长,所以图1中反映的时间比图2中反映的时间要晚,
所以小红参加200m比赛的照片为图2.
9.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为 .
【答案】12
【解析】过P作PE⊥x轴于E,交AB于M,如图,
∵P(4,4),A(0,2),B(6,2).
∴PM=2,PE=4,AB=6,
∵AB∥CD,
∴=.
∴=,
∴CD=12,
故答案为:12.
10.(2022 徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).则立柱AB的高度为______.
【答案】(170+60)cm.
【解析】延长AD交BN于点E,过点D作DF⊥BN于点F,
在Rt△CDF中,∠CFD=90°,∠DCF=30°,
则DF=CD=90(cm),CF=CD cos∠DCF=180×=90(cm),
由题意得:=,即=,
解得:EF=135,
∴BE=BC+CF+EF=(255+90)cm,
则=,
解得:AB=170+60,
答:立柱AB的高度为(170+60)cm.
三、解答题(6个小题,共60分)
1. (10分)一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.
(1)求影子A1B1的长度(如图①);
(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).
【答案】见解析
【解析】根据平行投影和正投影的定义解答即可.
如图①,A1B1=AB=8cm;
如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE==4cm,∴A2B2=4cm.
方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.
2.(12分)(2024福建省)在手工制作课上,老师提供了如图1所示的矩形卡纸,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.
图1 图2 图3
(1)直接写出的值;
(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )
图4
A. B.
C. D.
(3)
卡纸型号 型号Ⅰ 型号Ⅱ 型号Ⅲ
规格(单位:cm)
单价(单位:元) 3 5 20
现以小明设计的纸盒展开图(图2)为基本样式,适当调整,的比例,制作棱长为的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.
(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)
【答案】(1)2; (2)C; (3)见解析.
【解析】本题考查了几何体的展开与折叠,空间观念、推理能力、模型观念、创新意识等知识,掌握相关知识是解题的关键.
(1)由折叠和题意可知,,,四边形是正方形,得到,即,即可求解;
(2)根据几何体的展开图即可求解;
(3)由题意可得,每张型号卡纸可制作10个正方体,每张型号卡纸可制作2个正方体,每张型号卡纸可制作1个正方体,即可求解.
【小问1详解】
解:如图:
上述图形折叠后变成:
由折叠和题意可知,,,
∵四边形正方形,
∴,即,
∴,即,
∵,
∴,
∴的值为:.
【小问2详解】
解:根据几何体的展开图可知,“吉”和“如”在对应面上,“祥”和“意”在对应面上,而对应面上的字中间相隔一个几何图形,且字体相反,
∴C选项符合题意,
故选:C.
【小问3详解】
解:
卡纸型号 型号 型号 型号
需卡纸的数量(单位:张) 1 3 2
所用卡纸总费用(单位:元) 58
根据(1)和题意可得:卡纸每格的边长为,则要制作一个边长为的正方体的展开图形为:
∴型号卡纸,每张卡纸可制作10个正方体,如图:
型号卡纸,每张这样的卡纸可制作2个正方体,如图:
型号卡纸,每张这样的卡纸可制作1个正方体,如图:
∴可选择型号卡纸2张,型号卡纸3张,型号卡纸1张,则
(个),
∴所用卡纸总费用为:
(元).
3. (10分)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米.
(1)求∠BAD的度数.
(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)
【答案】(1)47° (2)3.3米
【解析】【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;
(2)分别求出和的正切值,用表示出和,得到一个只含有的关系式,再解答即可.
【详解】(1)解:,,
,
答:的度数是.
(2)解:在Rt△ABC中,,
∴.
同理,在Rt△ADC中,有.
∵,
∴.
∴,
∴(米).
答:表AC长是3.3米.
【点睛】本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.
4. (10分)杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8g/cm3,1kg防锈漆可以涂4m2的铁器面,三视图单位为cm)
【答案】见解析
【解析】从主视图和左视图可以看出这个几何体是由前后两部分组成的,呈一个T字形状.故可以把该几何体看成两个长方体来计算.
解:∵工件的体积为(30×10+10×10)×20=8000cm3,∴重量为8000×7.8=62400(g)=62.4(kg),∴铸造5000件工件需生铁5000×62.4=312000(kg)=312(t).∵一件工件的表面积为2×(30×20+20×20+10×30+10×10)=2800cm2=0.28m2.∴涂完全部工件需防锈漆5000×0.28÷4=350(kg).
方法总结:本题主要考查了由三视图确定几何体和求几何体的面积;关键是得到几何体的形状,得到所求的等量关系的相对应的值.
5. (8分)李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.
【答案】见解析
【解析】过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.
解:过点D作DN⊥AB,垂足为N,交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m.∵EF∥AB,∴△DFM∽△DBN,=,即=,∴BN=20m,∴AB=BN+AN=20+1.2=21.2m.
答:楼高为21.2m.
方法总结:在同一时刻的物体高度与影长的关系:=.
6.(10分)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线的距离皆为.王诗嬑观测到高度矮圆柱的影子落在地面上,其长为;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,测得斜坡坡度,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为,且此刻她的影子完全落在地面上,则影子长为多少?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为,则高圆柱的高度为多少?
【答案】(1)120cm;(2)正确;(3)280cm
【解析】(1)设王诗嬑的影长为xcm,由题意可得:,解得:x=120,
经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;
(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,
则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,
而横截面与地面垂直,高圆柱也与地面垂直,
∴高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;
(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,
过点F作FG⊥CE于点G,由题意可得:BC=100,CF=100,
∵斜坡坡度,∴,∴设FG=4m,CG=3m,在△CFG中,
,解得:m=20,∴CG=60,FG=80,∴BG=BC+CG=160,
过点F作FH⊥AB于点H,∵同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,
FG⊥BE,AB⊥BE,FH⊥AB,可知四边形HBGF为矩形,
∴,∴AH==200,∴AB=AH+BH=AH+FG=200+80=280,
故高圆柱的高度为280cm.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2025年人教版数学中考一轮复习29个单元核心素养检测试卷(全国通)
29 投影与视图单元素重点难点必考点养达标检测试卷
(答题时间90分钟,试卷满分120分)
一、选择题(本大题有10个小题,每小题3分,共30分)
1. (2024甘肃临夏)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是( )
A. 主视图和左视图完全相同 B. 主视图和俯视图完全相同
C. 左视图和俯视图完全相同 D. 三视图各不相同
2.(2024广西)榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是( )
A. B. C. D.
3. (2024福建省)如图是由长方体和圆柱组成的几何体,其俯视图是( )
A. B.
C. D.
4. (2023湖北天门)如图是一个立体图形的三视图,该立体图形是( )
A. 三棱柱 B. 圆柱 C. 三棱锥 D. 圆锥
5. (2023长春)下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )
A. 面① B. 面② C. 面⑤ D. 面⑥
6. (2024黑龙江齐齐哈尔)如图,若几何体是由5个棱长为1的小正方体组合而成的,则该几何体左视图与俯视图的面积和是( )
A. 6 B. 7 C. 8 D. 9·
7. 在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )
A.B.C.D.
8. 下图水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )
9. (2024江苏盐城)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )
A. 湿 B. 地 C. 之 D. 都
10. (2024青海省)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )
A. B. C. D.
二、填空题(本大题有6个小题,每空4分,共24分)
1. 数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.
2.小华家客厅有一张直径为高为的圆桌有一盏灯到地面垂直距离为圆桌的影子为,则点到点的距离为_______.
3. 某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=_______m.
4. 由若干个相同的小正方体构成的几何体的三视图如图所示,那么构成这个几何体的小正方体的个数是______.
5. 如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是 .
6. 如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积
为 cm2.
7.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.
8.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是 .(填“图1”或“图2”)
9.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为 .
10.(2022 徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).则立柱AB的高度为______.
三、解答题(6个小题,共60分)
1. (10分)一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.
(1)求影子A1B1的长度(如图①);
(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).
2.(12分)(2024福建省)在手工制作课上,老师提供了如图1所示的矩形卡纸,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.
图1 图2 图3
(1)直接写出的值;
(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )
图4
A. B.
C. D.
(3)
卡纸型号 型号Ⅰ 型号Ⅱ 型号Ⅲ
规格(单位:cm)
单价(单位:元) 3 5 20
现以小明设计的纸盒展开图(图2)为基本样式,适当调整,的比例,制作棱长为的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.
(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)
3. (10分)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米.
(1)求∠BAD的度数.
(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)
4. (10分)杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8g/cm3,1kg防锈漆可以涂4m2的铁器面,三视图单位为cm)
5. (8分)李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.
6.(10分)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线的距离皆为.王诗嬑观测到高度矮圆柱的影子落在地面上,其长为;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,测得斜坡坡度,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为,且此刻她的影子完全落在地面上,则影子长为多少?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为,则高圆柱的高度为多少?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)