惠州市 2025 届高三第三次调研考试试题
高三数学参考答案与评分细则
一、单项选择题:本题共 8小题,每小题满分 5分,共 40分.
题号 1 2 3 4 5 6 7 8
答案 C A A B D B C B
1.【解析】依题意, A B 1,1,3 .故选:C.
z 3 i (3 i)(2 i) 6 5i i
2 5 5i
2.【解析】因为 1 i,所以复数 z在复平面内对应的点的
2 i (2 i)(2 i) 2 2 i 2 5
坐标为(1,1),位于第一象限.故选:A.
sin cos tan 1 2 1
3.【解析】由 tan 2得 33cos sin 3 tan 3 ( 2) .故选:A.
4 a2 a2 2 a2.【解析】由 n 1 n 可得 n 是公差为 2的等差数列,故 a2 a28 3 5 2 16 .故选:B.
2
(2a b) a 2a a b 8 10 ( 15.【解析】 ) 13 .故选:D.
2
6.【解析】如下图所示:O,O1分别为上下底面的中心,作C1E AC于点 E ,
π
根据题意可知 A1B1 1,AB 2,侧棱与底面所成的角即为 C1CE,可知 C1CE ;4
因此可得C1E CE,易知 AC 2 2,A1C1 2 ,由正四棱台性质可得
CE 1 AC AC 2 ;
2 1 1 2
2
所以该正四棱台的高为C1E CE ,因此该四棱台的体积是2
V 1
3 12 22 12 22
2 7 2
.故选:B.
2 6
7.【解析】由概率公式可得 P B 1 P B 2 1 1 ,因为 P A B P A P B P AB ,
3 3
3 1
即 P AB 11 ,可得 P AB 1 ,所以 P AB P A P B ,因此,事件 A与事件 B独立.
5 3 15 5
故选:C.
x28.【解析】设点 P的横坐标为 n(n 0),则由 y ax可得 y x a, k n a,
2
2 2 2
由 y 2a2 ln x m y 2a k 2a 2a得 , ,所以 n a (a 0),解得 n a或 n 2a(舍),
x n n
高三数学答案 第 1页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
x2
由点 P为曲线C1: y ax与曲线C2: y 2a2 ln x m的交点,2
2 2
所以 P(n, n an)与 P(n,2a2 ln n m) n为同一点,所以 an 2a2 lnn m,
2 2
3
即m 2a2 lna a2 ,
2
3
令 f (a) 2a2 ln a a2(a 0),则 f (a) 4a lna a a(1 4lna),
2
令 f '(a) 0可得 a 4 e ,由 a 0知,当 0 a 4 e时, f (a) 0,当 4 e a时, f (a) 0,
所以 f (a)在 (0, 4 e)上单调递增,在 ( 4 e , )上单调递减,所以 f (a) f ( 4max e) e ,
m 1故实数 的最大值为 e 2 .故选:B.
二、多项选择题:本题共 3小题,每小题满分 6分,共 18分。在每小题给出的四个选项中,有多项符合
题目要求。全部选对得 6分,部分选对得部分分,有选错的得 0分。
题号 9 10 11
全部正确选项 BCD AC ABD
13 14
9.【解析】对于 A,因为一共有 10个数,所以中位数为 13.5,A错误;
2
对于 B,若随机变量 X 2服从正态分布 X 3, ,且 P X 4 0.7,则 P X 4 1 P X 4 0.3,
则 P 3 X 4 0.5 P X 4 0.2 ,B正确;
对于 C,若线性相关系数 r 越接近1,则两个变量的线性相关性越强,C正确;
对于 D,样本点的中心为 x , y ,所以 x m,y 2.8,此时经验回归方程为 y 0.3x m,所以b 0.3,
2.8 0.3m m,故m 4,D正确.
故选:BCD.
c 5
10.【解析】对于 A,由题可得 a 3,b 4,c 5,则 e ,故 A正确;
a 3
b 4
对于 B,双曲线的渐近线方程为 y x x,故 B错误;
a 3
对于 C,由题 F1F2 2c 10,由图结合双曲线定义可得 PF2 PF1 2a 6,
则 2PF2 PF1 PF 2 PF 22 1 2 PF2 PF1 36 PF 2 PF 22 1 100 .
PF 2 PF 21 2 F1F
2
cos F PF 2则 1 2 0 ,则 sin FPF2 PF PF 1 2
1,
1 2
高三数学答案 第 2页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
1
得 S F PF PF1 PF2 sin F1PF2 16,故 C正确;1 2 2
PF2 PF1 2a 6 PF1 6
对于 D,因为 ,所以 ,
PF2 2 PF1 PF2 12
又 F1F2 2c 10,则 F1PF2的周长为 28,所以 D错误.
故选:AC.
11.【解析】对于 A,如图所示,该几何体放到一个正方体内,由棱长为6, 易求得正方体的棱长最小
为6 2,故 A正确;
对于 B,如图所示,以正方体的顶点O为坐标原点建立如图所示的空间直角坐标系,
A(3 2,0,6 2),B(6 2,3 2,6 2),C(6 2,0,3 2),E(3 2,6 2,6 2 ),F (6 2,6 2,3 2),
所以 AB (3 2,3 2,0),AC (3 2,0, 3 2) , BE ( 3 2,3 2,0),BF (0,3 2, 3 2) ,
n
·AB 3 2x 3 2y 0
设平面 ABC的法向量为 n (x, y, z),所以 ,
n·AC 3 2x 3 2z 0
令 x 1,则 y 1, z 1,所以平面 ABC的一个法向量为 n (1, 1,1),
m·BE 3 2a 3 2b 0
设平面 BEF的法向量为m (a,b,c),所以 ,
m·BF 3 2b 3 2c 0
令 a 1,则 b 1,c 1,所以平面 BEF的一个法向量为m (1,1,1),
设平面 ABC与平面 BEF的夹角为 ,
m
·n 1 1
所以 cos cosm,n m
· n 3,3 3
1
所以由对称性可得任意两个有公共顶点的三角形所在平面的夹角的余弦值均为 ,故 B正确;
3
对于 C,G(0,6 2,3 2),所以CG ( 6 2,6 2,0),
|CG n | 12 2
点G到平面 ABC的距离 d 4 6,| n | 3
所以将该几何体以正三角形所在面为底面放置,则高度为 4 6,故 C错误;
对于 D,由该半正多面体的对称性知,该半正多面体的外接球的球心为正方体的中心,
1
该球半径为正方体的面对角线的一半 6 2 2 6,
2
高三数学答案 第 3页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
该半正多面体可以在一个正四面体内任意转动,则该半正多面体的外接球是正四面体的内切球时,
正四面体的体积最小,设此时正四面体的棱长为 a,高为 h,
1 3
所以 a2 h 1 4 3 a2 6,解得 h 24,
3 4 3 4
3 3
又正四面体底面正三角形半径为 a,则 ( a)2 242 a2,解得 a 12 6 ,
3 3
该正四面体棱长的最小值为12 6,故 D正确. 故选:ABD.
三、填空题:本题共 3小题,每小题 5分,共 15分.
12. 2 13. 204 2 3 14.
7
12.【解析】因为 f x 定义在R上的偶函数,所以 ,所以 f 1 f 1 1 1 2 .
13.【解析】由 x2 y2 2x 4y 1 0 (x 1)2 (y 2)2 4,则圆心为 ( 1,2),半径为 2,
由直线被圆所截得的弦长为 4,故直线 ax by 2 0(a 0,b 0)过圆心,所以 a 2b 2且
a 0,b 0 2 3 1 (2 3)(a 2b) 1 (8 4b 3a 1 4b 3a,则 ) (8 2 ) 4 2 3 ,当且仅
a b 2 a b 2 a b 2 a b
4b 3a 2 3
当 ,即 a 3 3 3 1,b 时等号成立,所以 的最小值为 4 2 3 .
a b 2 a b
14.【解析】当 n 3时,按顺时针方向把人标记为 1,2,3,4,5,6,用 i, j 表示 i和 j握手.
若 1和 2握手,共有两种方法: 3,4 , 5,6 和 3,6 , 4,5
若 1和 6握手,共有两种方法: 2,3 , 4,5 和 3,4 , 2,5
若 1和 4握手,共有 1种方法: 2,3 , 5,6 ,所以一共有 5种方法。
当 n 4时,
若 1和 2握手,剩下 6个人,情况同 n = 3,共 5种方法,
若 1和 8握手,剩下 6个人,情况同 n = 3,共 5种方法,
若 1和 4握手,则 2和 3握手,5,6,7,8之间握手情况同 n=2,一共 2种,从而1 2 2种方法;
若 1和 6握手,由对称性,情况同 1和 4握手,共 2种方法;
所以,一共有5 5 2 2 14种方法.
2 1
其中,共 2种方法使得Y 4 (相邻两人按顺时针或逆时针方向依次握手), P Y 4
14 7
共 4种方法使得Y 2 (类似 1,6 , 2,5 , 3,4 , 7,8 等), P Y 2 4 2
14 7
共 8种方法使得Y 3 (类似 1,4 , 2,3 , 5,6 , 7,8 ) 8 4等 , P Y 3
14 7
高三数学答案 第 4页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
Y的分布列如下:
Y 2 3 4
2 4 1
P
7 7 7
2 4 1 20
故 E Y 2 3 4
7 7 7 7 .
四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分 13分,其中第一小问 2分,第二小问 5分,第三小问 6分)
【解析】(1)A、C、M、 A1四点不共面. ································································· 2分
(2)【方法一】如图,以 D为原点,DA,DC,DD1分别为 x, y, z
轴,建立如图空间直角坐标系 ······································ 3分
则 E(2,0,1), F (0, 3 ,1) 3,故 EF ( 2, ,0) ·····················4分
2 2
又平面 ABCD的法向量为 n (0,0,1) ······························5分
所以 EF n 0,故 EF n . ···········································6分
又 EF 平面 ABCD, 故 EF //平面 ABCD. ································································· 7分
【方法二】如图,取 CD中点 N,再取 CN中点 G,连接 MN、FG和 AG.
1
由 F为 CM中点,则 FG // MN,且 FG MN .··················3分
2
在正方体 ABCD-A1B1C1D1中,E为 AA1中点,
1 1
故 AE // DD1 // MN,且 AE DD
2 1
MN ,
2
所以 FG // AE且 FG = AE,··········································· 4分
则四边形 AEFG为平行四边形,······································ 5分
故 EF//AG,······························································· 6分
又 EF 平面 ABCD, AG 平面 ABCD,
故 EF //平面 ABCD. ·······························································································7分
【注: EF 平面 ABCD, AG 平面 ABCD,条件不全扣 1分】
【方法三】如图,取 DD1中点 N,连接 EN、FN.
在梯形 D1MCD中,F为 CM中点,则 FN // CD. ·············· 3分
因为 FN 平面 ABCD,CD 平面 ABCD,
所以 FN //平面 ABCD. ················································· 4分
高三数学答案 第 5页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
在正方体 ABCD-A1B1C1D1中,E为 AA1中点,则 EN // AD,
因为 EN 平面 ABCD, AD 平面 ABCD,
所以 EN //平面 ABCD. ····························································································5分
因为 EN FN N, EN ,FN 平面 EFN,所以平面 EFN //平面 ABCD,·························6分
又 EF 平面 EFN,故 EF //平面 ABCD. ····································································· 7分
【注:若使用线线平行直接得到面面平行,扣 2分】
3
(3)由(2)【方法一】可知 EF ( 2, ,0),·····························································8分
2
又 A1(2,0,2) , B(2,2,0),故 A1B (0,2, 2) ,······························································ 9分
所以 cos A1B,EF
A 1 B E F 3 3 2
| A B || EF | 5 10 ,·················································· 12分1 2 2
2
3 2
故异面直线 A1B与 EF 所成角的余弦值为 . ······················································· 13分
10
【注:若在(2)【方法二】【方法三】基础上完成第(3)问,则需增加建立坐标系的得分】
16.(本小题满分 15分,其中第一小问 5分,第二小问 10分)
【解析】(1)因为 an 为等差数列,设公差为 d ,······················································ 1分
a 5 S 9 a 2d 5因为 3 , 3 ,所以 1 ,·································································· 2分
3a1 3d 9
d 2
解得 , ······································································································4分
a1 1
故 an 2n 1 . ·····································································································5分
(2 1 1 1 1 1 )因为 ,··············································7分
anan 1 2n 1 2n 1 2 2n 1 2n 1
所以T 1 1 1 1 1 1 1 1 1 1n
··························9分a1a2 a2a3 anan 1 2 3 3 5 2n 1 2n 1
1 1 1 n ,······················································································ 11分2 2n 1 2n 1
* 1 1 1
则对 n N ,Tn 1 ,·········································································13分2 2n 1 2
高三数学答案 第 6页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
又 log2 3 log2 2
1
,故Tn log2 3 . ································································15分2
17.(本小题满分 15分,其中第一小问 7分,第二小问 8分)
解:(1)在△ABC中, A , a 4,由余弦定理得,
3
b2 c2 2bc cosA 42 ,即 b2 c2 bc 16 . ① ························································· 2分
又 S 1△ABC |BC | | AD |
1
bc sin A,······································································3分
2 2
1
即 4 1 3 2 3 bc ,故bc 16 . ② ····························································· 4分
2 2 2
由①②得 (b c)2 bc 16, 即 (b c)2 0 ,故b c 4 a . ······································6分
所以△ABC为等边三角形. ···················································································· 7分
(2)在△ABC中,由 S△ABC S△ABM S△ACM ,
1
即 bcsin 1 BAC AM c sin BAM 1 AM b sin CAM ,······································8分
2 2 2
又直线 AM 为 BAC 1 π的平分线,则 BAM CAM BAC ,
2 6
1 bc 3 1 2 6 c 1 1 2 6 1所以 b ,·························································· 9分
2 2 2 3 2 2 3 2
bc 2 2即 b c . ③,····················································································· 10分
3
b2 c2 a2
又由余弦定理可得 cos BAC ,即 b2 c2 bc 16 . ④,··························· 11分
2bc
2 2
由③、④可知16 b c 3bc b c 2 2 b c ,·············································13分
解得b c 4 2 或b c 2 2(舍),··································································· 14分
所以 ABC的周长为 4 2 4 . ··············································································· 15分
18.(本小题满分 17分,其中第一小问 3分,第二小问 5分,第三小问 9分)
2a 2 2 a 2
【解析】(1)由题意可知 c 2 ,所以 ,·················································· 1分
c 1
a 2
所以b a2 c2 1,····························································································2分
2
所以椭圆C x的方程为 y2 1 . ·············································································3分
2
(2)①设 P x1, y1 ,Q x2 , y2 ,M 2,m ,
高三数学答案 第 7页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
x x x x
由题设可知: lPM : 1 y 21y 1,lQM : y2y 1,······················································ 4分2 2
l ,l M 2,m x1 my 1又因为 PM QM 经过点 , 所以 1 ,··················································5分
x2 my2 1
所以 P,Q均在直线 x my 1 0上,即 lPQ : x my 1 0 , ········································· 7分
x 1 0 x 1
由 ,解得 ,所以直线 PQ过定点 N 1,0 . ············································8分
y 0 y 0
1 1② 设实数 存在,因为 PN QN PN QN ,所以 ,·······················9分
PN QN
当直线 PQ斜率不存在时,此时直线 PQ的方程为 x 1,
x 1
x
1
由 解得
,
2 2 2
x 2y 2 y 2
1 1
所以 PN 2 QN ,故 2 2PN QN . ··················································· 10分2
当直线 PQ斜率 k=0时,不满足题意;
当直线 PQ斜率 k 0时,设直线 PQ的方程为 x my 1 0,则 k
1
,
m
1 1 1 y1 y 2
故 1 2 2 21 y y 1 1
1 m y1y2 ,························ 11分
k 1 N k
y2 yN
2
1 y y 1 y y 4y y
所以 1 2 1 2 1 2 ,········································12分
1 m2 y1y 22 1 m y1y2
x my 1
联立 可得2 m2 2 y2 2my 1 0 ,显然 0,······································13分
x 2y
2 2
所以 y 2m1 y2 2 , y1y
1
2 2 ,···································································· 14分m 2 m 2
2
2m 4 m2 2 1
2
m2 2
2 2 m 1
m2 21 2所以 2 m 2 2 2 . ················· 16分
1 m2 1 m2 1
m2 2 m2 2
综上可知,存在 2 2满足条件. ······································································· 17分
高三数学答案 第 8页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
19.(本小题满分 17分,其中第一小问 2分,第二小问 6分,第三小问 9分)
2x, x 0
【解析】(1)函数 y 2 x ,当 x ,0 时,单调递减,当 x 0, 时,单调递增,
2x, x 0
所以 y 2 x 是含谷函数,谷点 x 0; ·····································································1分
函数 y x cos x,求导 y 1 sin x 0恒成立,函数单调递增,所以不是含谷函数. ······· 2分
(2 2)由题意可知函数 y x 2x m ln x 1 在区间 2,4 内先减后增,且存在谷点,········ 3分
g x x2令 2x m ln x 1 ,所以 g x 2x m 2 ,·········································· 4分
x 1
m
设 q x g x 2x 2 m ,所以 q x 2 x 1 2 ,············································5分x 1
q x 2 m由m 0可知 0 g x 2,4 2 恒成立, 所以 在区间 上单调递增,············6分x 1
g 2 2 m 0
若满足谷点,则有 m ,解得 2 m 18,···············································7分
g 4 6 0 3
故 m的取值范围是 2,18 . ···················································································· 8分
(3 4 3 2)因为 h x x px qx 4 3p 2q x ,
所以 h x 4x3 3px2 2qx 4 3p 2q 4 1 x x2 3p 1 x 1 3p q
4 4 2
,·····9分
x2 1 3p x 1 3p q 若 0 恒成立,
4 4 2
则函数 y h x 在 x 1时单调递增,在 x 1时单调递减,不是谷函数,不满足题意;······10分
3p 3p q
因此关于 x x2 1 x 的方程 1
0 有两个相异实根,即 0,
4 4 2
设两根为 , 且 ,
因为 h 1 0 h 0 ,所以函数 y h x 在区间 ,1 上不满足单调递增,·····················11分
但是当 x min 1, , 时, h x 0, y h x 为单调递增,
所以 y h x 在区间 ,1 上的单调性至少改变一次,从而 1,
高三数学答案 第 9页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}
同理,因为 h 1 h 2 ,所以 1,······································································ 12分
因此, y h x 在区间 , 和 1, 上单调递增,在区间 ,1 和 , 上单调递减,
从而函数 y h x 的含谷区间 a,b 必满足 a,b , ,…………………………13分
2
即 L p,q 3p 1 4
1 3p q 9 p 2 3 p 3 2q ,………………14分
4 4 2 16 2
因为 h 1 1 p q 4 3p 2q 3 2p q , h 2 16 8p 4q 8 6p 4q 8 2p ,
由 h 1 h 2 得3 2 p q 8 2 p ,所以 4p q 11,
由 h 1 0得3 2 p q 0,所以 2p q 3,
11 4 p, p 4
所以 q , ····················································································· 15分
3 2 p, p 4
9 13
当 p 4时, L p,q p 2 p 19 2 ,
16 2
当 p 4时, L p,q 9 p 2 5 p 3 2 ,
16 2
因此当 p 4,q 5时, L p,q 的最小值为 2 . ····················································· 16分
因为 1 12,所以 (1 3p ) 1 3p q 1 0,即3p q 6
4 4 2
当 p 4,q 5时,满足3p q 6 .
综上所述,当且仅当 p 4,q 5时, L p,q 的最小值为 2 . ···································· 17分
高三数学答案 第 10页,共 10页
{#{QQABRYIEggCAABAAABgCQwFCCkAQkhGACQgOQEAEoAAAyBFABCA=}#}