湘教版八年级下册(新)第2章《2.2.1 平行四边形的性质》教学设计

文档属性

名称 湘教版八年级下册(新)第2章《2.2.1 平行四边形的性质》教学设计
格式 zip
文件大小 218.2KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2016-04-25 20:38:00

图片预览

文档简介

2.2 平行四边形
2.2.1 平行四边形的性质
第1课时 平行四边形的边、角的性质
1.理解平行四边形的概念;(重点)
2.掌握平行四边形边、角的性质;(重点)
3.利用平行四边形边、角的性质解决问题.(难点)
一、情境导入
平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?
二、合作探究
探究点一:平行四边形的定义
如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.
解析:根据三角形内角和定理求出∠DAC=∠ACB,从而可以推出AD∥BC,AB∥CD,再根据平行四边形的定义即可推出结论.
证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.
方法总结:平行四边形的定义是判断一个四边形是平行四边形的重要方法.
探究点二:平行四边形的边、角的性质
【类型一】 利用平行四边形的性质求边长
如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.
解析:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,DE=AF=2,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.故答案为7.
方法总结:平行四边形对边平行且相等,根据该性质可解决和边有关的问题.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型二】 利用平行四边形的性质求角度
               
如图,平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为(  )
A.35° B.55°
C.25° D.30°
解析:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠BCD=125°.又∵CE⊥AB,∴∠BEC=∠ECD=90°,∴∠BCE=125°-90°=35°.故选A.
方法总结:平行四边形对角相等,对边平行,所以利用该性质可以解决和角度有关的问题.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型三】 利用平行四边形的性质证明线段相等
如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.
解析:根据平行四边形的性质推出∠DGC=∠GCB,再由等腰三角形性质求出∠DGC=∠DCG,即可推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可得出结论.
证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DGC=∠GCB,∵DG=DC,∴∠DGC=∠DCG,∴∠DCG=∠GCB,∵∠DCG+∠ECP=180°,∠GCB+∠FCP=180°,∴∠ECP=∠FCP,在△PCF和△PCE中,∴△PCF≌△PCE(SAS),∴PF=PE.
方法总结:利用平行四边形的性质可得出相应的等量关系,进而通过证明三角形的全等得出结论.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
【类型四】 判断直线的位置关系
如图,在平行四边形ABCD中,AB=2AD,M为AB的中点,如图连接DM、MC,试问直线DM和MC有何位置关系?请证明.
解析:由AB=2AD,M是AB的中点的位置关系,可得出DM、CM分别是∠ADC与∠BCD的角平分线,又由平行线的性质可得∠ADC+∠BCD=180°,进而可得出DM与MC的位置关系.
解:DM与MC互相垂直,∵M是AB的中点,∴AB=2AM,又∵AB=2AD,∴AM=AD,∴∠ADM=∠AMD,∵四边形ABCD为平行四边形,∴AD∥BC,AB∥CD,∴∠AMD=∠MDC,∴∠ADM=∠MDC,即∠MDC=∠ADC,同理∠MCD=∠BCD,∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠MDC+∠MCD=∠BCD+∠ADC=90°,∴∠DMC=90°,∴DM与MC互相垂直.
方法总结:根据平行四边形对边平行、对角相等,邻角互补等性质再结合三角形全等、等腰三角形的知识可证明线段垂直、平行等问题.
探究点三:两平行线间的距离
如图,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
解析:结合平行线间的距离相等和三角形的面积公式即可证明.
证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=GH·h,S△FGH=GH·h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△FGH-S△GOH,∴△EGO的面积等于△FHO的面积.
方法总结:解题的关键是明确两平行线间的距离相等;同底等高的两个三角形的面积相等.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题
三、板书设计
1.平行四边形的定义
2.平行四边形的边、角的性质
3.两平行线间的距离
  
从现实生活中抽象出图形,理解和掌握平行四边形边、角的性质,学生能很好的运用,只是在推理过程中不是很完美,在以后的数学中要根据不同的情况加强这方面的训练
第2课时 平行四边形的对角线的性质
1.掌握平行四边形对角线互相平分的性质;(重点)
2.利用平行四边形对角线的性质解决有关问题.(难点)
一、情境导入
如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,你能算出图中阴影部分的面积吗?
二、合作探究
探究点一:平行四边形的对角线的性质
【类型一】 利用平行四边形对角线的性质求线段长
               
已知: ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5cm,求这个平行四边形各边的长.
解析:平行四边形的周长为60cm,即相邻两边之和为30cm,△AOB的周长比△DOA的周长长5cm,而AO为共用,OB=OD,所以由题可知AB比AD长5cm,进一步解答即可.
解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵△AOB的周长比△DOA的周长长5cm,∴AB-AD=5cm,又∵ ABCD的周长为60cm,∴AB+AD=30cm,则AB=CD=cm,AD=BC=cm.
方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型二】 利用平行四边形对角线的性质证明线段或角相等
如图, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF.
解析:根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可得出结论.
证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∴△DFO≌△BEO(ASA),∴OE=OF.
方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
【类型三】 判断直线的位置关系
如图平行四边形ABCD中,AC、BD交于O点,点E、F分别是AO、CO的中点,试判断线段BE、DF的关系并证明你的结论.
解析:根据平行四边形的对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,再证△BOE≌△DOF,从而得出BE=DF,∠OEB=∠OFD,∴BE∥DF.
解:BE=DF,BE∥DF.理由如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,在△OFD和△OEB中,∴△OFD≌△OEB,∴∠OEB=∠OFD,BE=DF,∴BE∥DF.
方法总结:在解决平行四边形的问题时,如果条件中有对角线时,可利用三角形全等解决.
探究点二:平行四边形的面积
在 ABCD中:
(1)如图①,O为对角线BD、AC的交点,求证:S△ABO=S△CBO;
(2)如图②,设P为对角线BD上任一点(点P与点B、D不重合),S△ABP与S△CBP仍然相等吗?若相等,请证明;若不相等,请说明理由.
  
解析:(1)根据平行四边形的对角线互相平分可得AO=CO,再根据等底同高的三角形的面积相等解答;
(2)根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底同高的三角形的面积相等解答.
(1)证明:在 ABCD中,AO=CO,设点B到AC的距离为h,则S△ABO=AO·h,S△CBO=CO·h,∴S△ABO=S△CBO;
(2)解:S△ABP=S△CBP.在 ABCD中,点A、C到BD的距离相等,设为h,则S△ABP=BP·h,S△CBP=BP·h,∴S△ABP=S△CBP.
方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
三、板书设计
1.平行四边形对角线互相平分
2.平行四边形的面积
通过分组讨论学习和学生自己动手操作和归纳,加强学生在教学过程中的实践活动,也使学生之间的合作意识更强,与同学交流学习心得的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,促进教学相长
第 1 页 共 6 页