(在此卷上答题无效)
2024-2025学年高三年级第二次质量检测
数 学 试 题
(完卷时间 120 分钟;满分 150分)
友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选
项中,只有一项是符合题目要求的.
1. 已知全集U A B 1,2,3,4 , A U B 2,4 , B U A 1 ,则
A B
A. 1,2,3,4 B. 1,3 C. 2,3,4 D. 3
4
2. 复数 的共轭复数是
1 3i
A.1 3i B. 3 i C.1 3i D. 3 i
3. 已知圆台上下底面积分别为 , ,母线长为 5,则该圆台的体积为
A 7 B C 14 D . . . .
3 3 3 3
4. 已知 sin 1 1 , sin ,则sin cos
2 3
A 1 B 1 C 5 5. . . D.
12 12 12 12
5. 已知 | a | 3, | b | 2, (a 3b) (a 2b) 18,则 a 与 b 的夹角为
A. 45 B.60 C.90 D.120
6. 若函数 f (x) xa, x (0, )的图象如图所示,则函
数 g(x) loga x loga (2 x)的图象大致为
数学试题(第 1页 共 5页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
A B C D
7. 金箔是黄金锻制而成的矩形薄片,其规格是指金箔制成后的尺寸.我国南
京金箔锻制技艺被国务院列为第一批国家级非物质文化遗产名录.K系列
的矩形金箔K0 ,K1,K2 , ,K13共 14种规格,其规格具有下列特点:①较长边
长与较短边长的比值都相同;②每一序号的金箔(K13除外)对裁后,可以得
到两张后一序号的金箔.比如 1张K1金箔对裁后可以得到 2张K2金箔.若
K4金箔的较短边长为 210mm,则K11金箔的较长边长约为
A.9mm B.13mm C.18mm D.26mm
x28. C : y
2
已知椭圆 2 a b2
1(a b 0)的左、右焦点分别为 F1,F2 ,点 A在C上,
点 B在 y轴上, F1A F1B,且3AF2 2F2B,则 cos BAF1
A 4 B 3 C 2 5 D 5. . . .
5 5 5 5
二、选择题:本题共 3 小题,每小题 6分,共 18 分.在每小题给出的选项中,
有多项符合题目要求.全部选对的得 6 分,部分选对的得部分分,有选错
的得 0分.
9. 抛物线 y2 4x的焦点为F,准线与 x轴交于点M ,点 A在抛物线上(除原
点外),则
A.当 AF x轴时, | AM | 2 2
B.当 | AF | 3时,△ AMF 的面积为2
C.以 AF 为直径的圆与 y轴相切
数学试题(第 2页 共 5页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
D.△ AMF 外接圆的面积最小值为 π
a
10. 若数列{a nn}为递增数列且数列 也为递增数列,则称{an}为“重增数
n
列”.下列数列中,是重增数列的有
A n 5. 3 B. n C. log2 n D. sinn
11. 定义在R上的函数 f x ,g x 满足:①当 x 0时,f x 0,且 g x 0;
② g x y g x g y f x f y ;③ g x y g x g y f x f y ,
则
A. g 0 1 B. g x 为偶函数
C. f x 为奇函数 D. f x 为周期函数
三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
12. 已知随机变量 ~ N (4, 2),若 P ≤5 0.6,则 P 3 4 .
13. 1函 数 f x sin x , x 0, 恰 有 两 个 零 点 x1 , x2 , 则3
f x1 x2 .
14. 已知 a R ,动直线 l与函数 f (x) x3 3x2 ax的图象交于 A,B,C三点,且
点 A在 y 轴的左侧,M 为线段 BC的中点,则点M 的横坐标的取值范围
为 .
四、解答题:本题共 5 小题,共 77 分.解答应写出文字说明、证明过程或演算
步骤.
15. (13分)
在△ ABC中,角 A,B,C的对边分别为 a,b,c,acosB bcos A a c .
(1)求 B;
数学试题(第 3页 共 5页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
(2)若b2 ac,△ ABC的面积为 3,求△ ABC的周长.
16. (15分)
2 2
已知O E : x y为坐标原点,双曲线 2 2 1(a 0,b 0)经过点 A( 5,2),左、a b
右焦点分别为 F1( 6,0) ,F2 (6,0) .
(1)求 E的离心率;
(2)一组平行于OA的直线与 E相交,证明这些直线被 E截得的线段的中
点在同一条直线上.
17. (15分)
如图,在四棱锥P ABCD中,底面 ABCD是边长
为 2的正方形,PA AB,AB PD, PAD 120 ,E
为线段 PD的中点.
(1)证明:直线 PB//平面 ACE;
(2)求直线 AE与平面PAC所成角的正弦值.
18. (17分)
1
已知函数 f (x) (x 1) ln(x 1) 1, g(x) ax2 2x ex.
2
(1)求 f (x)的最小值;
(2) a R,写出一条与曲线 y f (x)和 y g (x)都相切的定直线的方程
(无需写出求解过程);
(3)当 x 0时, f (x) g(x),求a的取值范围.
数学试题(第 4页 共 5页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
19. (17分)
某商店售卖一种珠环,消费者从红、蓝两种颜色的装饰珠中各选出偶数个,
按随机的顺序用绳子穿成“串”(穿在一根绳子上,之后固定位置不可移位),再
将绳子首尾相接连成“环”.小王现在选了 6个红珠 4个蓝珠穿成一个“串”.
(1)如果小王将这一串装饰珠剪了一刀分成了两串,每串各有 5个装饰珠,
求这两串装饰珠都恰好是 3个红珠和 2个蓝珠的概率;
(2)在把 10个装饰珠连成环后,小王剪了两刀将珠环分成各含 4个装饰
珠和 6个装饰珠的两串.设 4个装饰珠串里红珠的个数为随机变量 X,求 X的
分布列与期望;
(3)如果小王选了 2m 个红珠和 2n个蓝珠以任意顺序连成一个“环”
(m,n N ),求证:只需要在合适的位置剪两刀,总可将环分成两串,每串都
恰好是m个红珠和 n个蓝珠.
数学试题(第 5页 共 5页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}2024-2025学年高三年级第二次质量检测
数学参考答案
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试
题的主要考查内容比照评分标准制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题
的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分
数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数。
一、选择题:本题共 8小题,每小题 5分,共 40分.
1.D 2.C 3.C 4.D
5.B 6.A 7.D 8.A
二、选择题:本题共 3小题,每小题 6分,共 18分.
9.ACD 10.AB 11.ABC
三、填空题:本大题共 3小题,每小题 5分,共 15分.
12.0.1 13 1. 14. (3 , )
3 2
四、解答题:本大题共 5小题,共 77分.
15.【命题意图】本小题考查正弦定理、余弦定理、三角形面积等基础知识,考查逻辑思维
能力、运算求解能力、空间想象能力等,考查函数与方程思想、数形结合思想、化归与转
化思想等,考查数学抽象、逻辑推理、数学运算等核心素养,体现基础性与综合性,满分
13分.
【解析】解法一:(1)因为 a cos B b cos A a c,
由正弦定理得 sin AcosB sin B cos A sin A sinC,·········································2分
所以 sin AcosB sin B cos A sin A sin(A B),···············································3分
sin A sin Acos B sin B cos A,··································································4分
即 2sin Acos B sin A,···············································································5分
因为 sin A 1 0,所以 cosB ,··································································· 6分
2
高三数学参考答案(第 1页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
因为 B (0, ),所以 B .········································································· 7分
3
(2)因为△ ABC S 1的面积 ac sin B 3 ac 3,
2 4
所以 ac 4,···························································································· 9分
因为 b2 ac 4,所以b 2,
由(1)得 b2 a2 c2 2ac cosB a2 c2 ac (a c)2 3ac ,························· 10分
所以 ac (a c)2 3ac,故 (a c)2 16 ,························································ 11分
解得 a c 4,························································································12分
所以△ ABC的周长 a b c 6 .···································································13分
解法二:(1)因为 a cos B b cos A a c,
a2 c2 b2 b2 c2 a2
由余弦定理得 a b a c,·········································· 2分
2ac 2bc
即 (a2 c2 b2 ) (b2 c2 a2 ) 2ac 2c2 ,
即 2a2 2b2 2ac 2c2 ,
所以 a 2 c2 b2 ac ,··············································································· 5分
2 2 2
所以 cosB a c b 1 ,······································································ 6分
2ac 2
B (0, ) B 因为 ,所以 .········································································· 7分
3
(2)由(1)得 b2 a 2 c2 2ac cos B a 2 c2 ac,
因为 b2 ac,
所以 ac a 2 c2 ac,整理得 (a c)2 0 ,······················································ 9分
即 a c,又 B ,所以△ ABC为等边三角形,
3
即 a b c,·························································································· 10分
因为△ ABC 1 3的面积 S ac sin B a2 3 ,
2 4
所以 a 2,···························································································· 12分
所以△ ABC的周长为 6 .·············································································13分
解法三:(1)同解法一··············································································· 7分
高三数学参考答案(第 2页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
(2)由(1)得 b2 a2 c2 2accosB a2 c2 ac 2ac ac ac,
所以 b2 ac,
当且仅当 a c时取“ ”,············································································9分
因为 b2 ac,
所以 a b c,······················································································· 10分
△ ABC S 1 3因为 的面积 ac sin B a2 3,
2 4
所以 a 2,···························································································· 12分
所以△ ABC 的周长为 6 .·············································································13分
16.【命题意图】本小题考查双曲线的标准方程及简单几何性质、曲线与方程、直线与双
曲线的位置关系等基础知识,考查逻辑思维能力、运算求解能力、空间想象能力等,考查
数形结合思想、化归与转化思想、函数与方程思想等,考查直观想象、逻辑推理、数学运
算等核心素养,体现基础性与综合性,满分 15分.
c 6,
【解析】解法一:(1 25 4)依题意,得 2 2 1, ···············································3分
a b
a2 b2 c
2 ,
a 2 5,
解得 b 4,
c 6,
c 3
所以 E的离心率 5.········································································· 6分
a 5
x2 y2
(2)由(1)知 E的方程为 1.·······················································8分
20 16
OA k 2 OA 2直线 的斜率 ,设平行于 的一组直线方程为 y x t (t 0),与 E交于点
5 5
B(x1, y1),C(x2 , y2 ),线段 BC的中点为M (x0 , y0 ).
y 2 x t, 5
由
x
2 y2
1, 20 16
得 4x2 2 5( x t)2 80 16,即 x2 4tx 5t 2 80 0,···································· 10分
5 5
高三数学参考答案(第 3页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
16t2 4 16 ( 5t2 80) 80t2 1024 0,
5
5
所以 x1 x2 t,4
x 1 (x 5 2 5因为 0 1 x2 ) t, y0 x0 t t,············································ 13分2 8 5 4
所以 y0 2x0 ,
即这些直线被 E截得的线段的中点在同一条直线 y 2x上.··························· 15分
解法二:(1)因为两焦点分别为 F1( 6,0), F2 (6,0),所以 c 6,·······················1分
2a ( 5 6)2 22 ( 5 6)2 22 4 5 ,即 a 2 5,·································· 4分
c 3
所以 E的离心率 5.········································································· 6分
a 5
x2 y2
(2)由(1)知 E的方程为 1.·······················································8分
20 16
2
直线 OA的斜率 k ,设平行于 OA的一组直线与 E交于点 B(x
5 1
, y1),C(x2 , y2 ),线段
BC的中点为M (x0 , y0 ).
x 2 y 21
1 1,
由 20 16
x 2 2 2 y2
1,
20 16
x 2 x 2 y 2 y 2
得 1 2 1 2 ,············································································· 12分
20 16
x x , y y 0 y1 y 2 16 x1 x显然 21 2 1 2 ,所以 ,······································· 13分x1 x2 20 y1 y2
4 2x 2
所以 0 ,即 y0 2x ,5 2y0 5
0
即这些直线被 E截得的线段的中点在同一条直线 y 2x上.··························· 15分
(注:未交待 x1 x2 , y1 y2 0不扣分.)
17.【命题意图】本小题考查棱锥的概念、直线与平面平行、直线与平面垂直、直线与平
面所成角、空间向量等基础知识,考查空间想象能力、逻辑推理能力、运算求解能力等,
考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性,满分 15分.
高三数学参考答案(第 4页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
【解析】(1)证明:连接 BD交 AC于点 H,连接HE,··································· 1分
因为四边形 ABCD是正方形,
所以 H是 BD中点,又 E为线段 PD的中点,··················································2分
所以 HE//PB,··························································································3分
又 HE 平面 ACE, PB 平面 ACE,
所以直线 PB//平面 ACE .·············································································6分
(2)因为底面 ABCD是边长为 2的正方形,所以 AB AD,
又 AB PD, AD PD D,所以 AB 平面 PAD,·······································8分
在平面 PAD内作 Ax AP,分别以 Ax,AP,AB为 x,y,z轴的正方向建立如图所示的
空间直角坐标系 A xyz,··········································································· 9分
又底面 ABCD为边长为 2的正方形, PA AB,则 PA 2,又 PAD 120 ,
得 A(0,0,0), P(0,2,0),D( 3, 1,0),C( 3, 1,2), E( 3 , 1 ,0),··················· 10分
2 2
AC ( 3, 3 1 1,2), AP (0,2,0), AE ( , ,0),········································· 11分
2 2
设平面 PAC的一个法向量为 n (x, y, z),
n AC 0, 3x y 2z 0,
则 即
n AP 0, 2y 0,
取 z 3,得 n (2 3,0, 3) ,··································································· 13分
设直线 AE与平面 PAC所成角为 ,
AE n
sin cos AE, n 3 21则 ,··············································15分
AE n 21 7
高三数学参考答案(第 5页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
即直线 AE 21与平面 PAC所成角的正弦值为 .
7
18.【命题意图】本小题考查导数的概念及其几何意义、函数的最值、不等式证明等基础
知识,考查逻辑推理能力、运算求解能力、空间想象能力等,考查数形结合思想、化归与
转化思想、函数与方程思想、分类与整合思想等,考查直观想象、逻辑推理、数学运算等
核心素养,体现综合性与创新性,满分 17分.
【解析】解法一:(1) f (x) 的定义域为 ( 1, ),··········································· 1分
f '(x) ln(x 1) 1 ,····················································································· 2分
当 x (
1
1, 1)时, f '(x) 0 , f (x) 单调递减,
e
x (1当 1, )时, f '(x) 0, f (x) 单调递增,············································· 4分
e
故 f (x)min f (
1 1
1) 1 .······································································· 5分
e e
(2)存在定直线 y x 1与曲线 y f (x) 与 y g (x) 都相切.······························8分
理由如下:因为 g (x) ax 2 e x , g (0) 1, f (0) 1 g (0), f (0) 1 g (0),
所以曲线 f (x)与曲线 g (x)在 (0, 1)处的切线方程均为 y x 1,即存在定直线 y x 1与
曲线 y f (x)与 y g (x) 都相切.
(注:本小题给出正确答案即得满分,无需说明理由.)
(3)令 H (x) f (x) g(x) (x 1) ln(x 1)
1
1 ax2 2x ex, x [0, ),
2
因为 x 0时, f (x) g (x),所以 H (x) 0恒成立,············································· 9分
H (x) ln(x 1) 1 ax ex,
令 h(x) H (x)
1
,则有 h (x) a ex ,
x 1
令T (x) ex x 1,则T (x) ex 1,
当 x ( ,0)时,T (x) 0,T (x)单调递减,
当 x (0, )时,T (x) 0,T (x)单调递增,
故T (x)min T (0) 0,故 ex x 1≥0,即 ex x 1,········································11分
高三数学参考答案(第 6页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
则 a 2 1 x 1时, h (x) e a x 1 a 2 a 0,······························· 12分
x 1 x 1
所以 h(x)在 [0, )上单调递增,所以 h(x) h(0),
又 h(0) 0,所以 h(x) 0,即H (x)≥0,
所以 H (x)在 [0, )上单调递增,从而 H (x) H (0),
又 H (0) 0,所以 H (x) 0 ;·········································································13分
1
当 a 2 x时,令 (x) h (x) e a,
x 1
1
因为 x [0, ),则有 (x) e
x 0
(x 1)2 ,
h (x) ex 1故 a在 [0, )上单调递增,·················································14分
x 1
而 h (0)
1
2 a 0, h (ln a) 0,故存在 x0 (0, ln a), h (x0 ) 0,·········15分ln a 1
从而当 x (0, x0 )时, h (x) 0, h(x)单调递减,
所以当 x (0, x0 )时, h(x) H (x) H (0),
又 H (0) 0,所以H (x) 0,所以 H (x)在 (0, x0 )上单调递减,
所以 H (x0 ) H (0),又 H (0) 0,
故H (x0 ) 0,与 H (x) 0矛盾,故不合题意.·················································· 16分
综上所述,实数 a的取值范围为 ( , 2] .························································17分
解法二:(1)同解法一·············································································· 5分
(2)同解法一·························································································· 8分
(3)令 H (x) f (x) g(x) (x 1) ln(x
1
1) 1 ax2 2x ex, x [0, ),
2
因为 x 0时, f (x) g (x),所以 H (x) 0恒成立,············································· 9分
H (x) ln(x 1) 1 ax e x,
令 h(x) H (x)
1 x
,则有 h (x) a e ,
x 1
1 x 1 x
则 a 2时, h (x) e a e 2,············································· 11分
x 1 x 1
高三数学参考答案(第 7页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
令T (x)
1
ex 2,
x 1
x 1
当 x [0, )时,T (x) e 0(x , 1)2
故T (x)在 [0, )上单调递增,T (x) T (0),又T (0) 0,所以T (x) 0,故 h (x) 0,
············································································································ 12分
所以 h(x)在 [0, )上单调递增,从而 H (x) h(x) h(0),又 h(0) 0,所以H (x) 0,
所以 H (x)在 [0, )上单调递增,从而 H (x) H (0),又 H (0) 0,所以 H (x) 0恒成立;
············································································································ 13分
x 1
当 a 2时,令 (x) h (x) e a,
x 1
1
因为 x [0, ),则有 (x) e
x 0
(x 1)2 ,
故 h (x) ex
1
a在 [0, )上单调递增,·················································14分
x 1
而 h (0)
1
2 a 0, h (ln a) 0,故存在 x (0, ln a), h (x ) 0,·········15分
ln a 1 0 0
从而当 x (0, x0 )时, h (x) 0, h(x)单调递减,
所以当 x (0, x0 )时, h(x) H (x) H (0),
又 H (0) 0,所以H (x) 0,所以 H (x)在 (0, x0 )上单调递减,
所以 H (x0 ) H (0),又 H (0) 0,
故H (x0 ) 0,与 H (x) 0矛盾,故不合题意.·················································· 16分
综上所述,实数 a的取值范围为 ( , 2] .························································17分
解法三:(1)同解法一··············································································· 5分
(2)同解法一·························································································· 8分
1
(3)令 H (x) f (x) g(x) (x 1) ln(x 1) 1 ax2 2x ex, x [0, ),
2
因为 x 0时, f (x) g (x),所以 H (x) 0恒成立,············································· 9分
H (x) ln(x 1) 1 ax e x,
高三数学参考答案(第 8页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
令 h(x) H (x),则有 h (x)
1
a ex ,
x 1
令 (x)
1
h (x) ex a,
x 1
1
因为 x [0, ),则有 (x) e
x 0
(x 1)2 ,··············································· 11分
故 h (x) ex
1
a在 [0, )上单调递增,·················································12分
x 1
所以当 a 2时, h (x) h (0),又 h (0) 2 a 0,故 h (x) 0,
所以 h(x)在 [0, )上单调递增,从而 H (x) h(x) h(0),又 h(0) 0,所以H (x) 0,
············································································································ 13分
所以 H (x)在 [0, )上单调递增,从而 H (x) H (0),又 H (0) 0,所以 H (x) 0恒成立;
············································································································ 14分
当 a 2时, h (0) 2 a 0
1
, h (ln a) 0,
ln a 1
又有 h (x)在 [0, )上单调递增,故存在 x0 (0, ln a), h (x0 ) 0,····················· 15分
从而当 x (0, x0 )时, h (x) 0, h(x)单调递减,
所以当 x (0, x0 )时, h(x) H (x) H (0),
又 H (0) 0,所以H (x) 0,所以 H (x)在 (0, x0 )上单调递减,
所以 H (x0 ) H (0),又 H (0) 0,
故H (x0 ) 0,与 H (x) 0矛盾,故不合题意.·················································· 16分
综上所述,实数 a的取值范围为 ( , 2] .························································17分
19.【命题意图】本小题考查古典概型、离散型随机变量的分布列与期望等基础知识,考
查逻辑思维能力、运算求解能力、数学建模能力、创新能力,考查数形结合思想,化归与
转化思想等,考查直观想象、逻辑推理、数学运算等核心素养,体现综合性、应用性与创
新性,满分 17分.
【解析】(1)设两串装饰珠都恰好是 3个红珠和 2个蓝珠为事件 A,·················· 1分
高三数学参考答案(第 9页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
3 2
则 P A C C 10 6 45 .··············································································· 3分C10 21
(2)随机变量 X 的可能取值有 0,1,2,3,4,············································ 4分
0
P X 0 C6C
4 1
4
C 4 210, ·········································································· 5分10
1 3
P X 1 C 6C4 24 4
C 4 210 35,······································································ 6分10
C 2 2P X 2 6C 4 90 34 C 210 7 ,······································································ 7分10
C3C1P X 3 6 4 80 8
C 4
210 21,······································································8分10
4
P X 4 C6C
0
4
15 1
4 C 210 14 ,····································································· 9分10
所以 X 的分布列为
X 0 1 2 3 4
1 4 3 8 1
P
210 35 7 21 14
E X 0 1 1 4 2 3 3 8 4 1 12所以, .·······························10分
210 35 7 21 14 5
(3)编号:任选一个红珠记其编号为 1,并按顺时针方向依次给每个装饰珠编号 2,3,4,
5,6,…, 2 m n ;
编组:1号珠,连同它顺时针方向后的m n 1个装饰珠,共m n个装饰珠编为一组,
称为 1号组;2号珠,连同它顺时针方向后的m n 1个装饰珠,共m n个装饰珠编为一
组,称为 2号组;…,共 2 m n 组,每组均有m n个装饰珠.······················12分
有以下结论:
①不可能每组中红珠都多于或少于m个.················································· 14分
高三数学参考答案(第 10页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}
因为每个装饰珠都同时在m n组中,所以每组中的红珠数目之和为 2m m n ,若每
组中红珠都多于(或少于)m个,因为共 2 m n 组,则此时红珠总数会多于(或少于)
2m m n ,与每组中的红珠数目之和为 2m m n 矛盾.
②相邻两组中红珠数量最多相差 1.······················································ 15分
因为后一组的装饰珠为前一组的装饰珠去掉第一个并在最后加上一个,所以它们之间
只有 2个装饰珠有区别,前一组装饰珠的第一个可能为红珠或蓝珠,最后加上的这一个也
可能为红珠或蓝珠,所以有以下四种情形:去掉红珠,加上红珠;去掉红珠,加上蓝珠;
去掉蓝珠,加上蓝珠;去掉蓝珠,加上红珠.不论哪种情况,相邻两组中红珠数量只能相差
1或 0.
现假设没有任何一组中的红珠数量为m,由①知,必存在两相邻号组 A,B,A中红珠
数≤m 1, B中红珠数≥m 1,即二者红珠数至少相差 2,与②矛盾.
因此,必有某号组恰好有m个红珠, n个蓝珠,在该号组的两侧各剪一刀,即可满足
条件.····································································································· 17分
(注:(3)问中记蓝珠编号为 1,或按逆时针方向编组均可解答,与答案所述情况等价.)
高三数学参考答案(第 11页 共 11页)
{#{QQABIQA05gC4kBSACK5KRUEkCwuQsJMhLaokARCYOAZCwJFABAA=}#}