2025年高考物理二轮复习导学案:专题强化十二电磁感应中的动力学、能量和动量问题

文档属性

名称 2025年高考物理二轮复习导学案:专题强化十二电磁感应中的动力学、能量和动量问题
格式 docx
文件大小 865.6KB
资源类型 教案
版本资源 其它版本
科目 物理
更新时间 2025-02-09 19:02:34

图片预览

文档简介

2025年高考物理二轮复习导学案:专题强化十二电磁感应中的动力学、能量和动量问题含答案专题强化十二 电磁感应中的动力学、能量和动量问题
1. 会用动力学知识分析电磁感应问题.
2.会用功能关系和能量守恒解决电磁感应中的能量问题.
3.掌握应用动量定理处理电磁感应问题的方法技巧.
4.建立电磁感应问题中动量守恒的模型,并用动量守恒定律解决问题.
考点一 电磁感应中的动力学问题
1.导体的两种运动状态
(1)导体的平衡状态——静止状态或匀速直线运动状态.
处理方法:根据平衡条件列式分析.
(2)导体的非平衡状态——加速度不为零.
处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.
2.用动力学观点解答电磁感应问题的一般步骤
例 1 (多选)[2023·山东卷]足够长U形导轨平置在光滑水平绝缘桌面上,宽为1 m,电阻不计.质量为1 kg、长为1 m、电阻为1 Ω的导体棒MN放置在导轨上,与导轨形成矩形回路并始终接触良好,Ⅰ和Ⅱ区域内分别存在竖直方向的匀强磁场,磁感应强度分别为B1和B2,其中B1=2 T,方向向下.用不可伸长的轻绳跨过固定轻滑轮将导轨CD段中点与质量为0.1 kg的重物相连,绳与CD垂直且平行于桌面.如图所示,某时刻MN、CD同时分别进入磁场区域Ⅰ和Ⅱ并做匀速直线运动,MN、CD与磁场边界平行.MN的速度v1=2 m/s,CD的速度为v2且v2>v1,MN和导轨间的动摩擦因数为0.2.重力加速度大小取10 m/s2,下列说法正确的是(  )
A.B2的方向向上 B.B2的方向向下
C.v2=5 m/s D.v2=3 m/s
例 2 [2024·九省联考河南卷]如图(a)所示,一个电阻不计的平行金属导轨,间距L=1 m,左半部分倾斜且粗糙,倾角θ=37°,处于沿斜面向下的匀强磁场中;右半部分水平且光滑,导轨之间存在一个三角形匀强磁场区域,磁场方向竖直向下,其边界与两导轨夹角均为α,tan α=0.1.右半部分俯视图如图(b).导体棒Q借助小立柱静置于倾斜导轨上,其与导轨的动摩擦因数μ=0.5.导体棒P以v0=0.5 m/s的速度向右进入三角形磁场区域时,撤去小立柱,Q棒开始下滑,同时对P棒施加一外力使其始终保持匀速运动.运动过程中,两棒始终垂直于导轨且接触良好.已知两磁场的磁感应强度大小均为B=1 T,两棒的质量均为m=0.1 kg,Q棒电阻R=0.5 Ω,P棒电阻不计.重力加速度大小取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,以Q棒开始下滑为计时起点.求
(1)撤去小立柱时,Q棒的加速度大小a0;
(2)Q棒中电流随时间变化的关系式;
(3)Q棒达到的最大速度vm及所用时间t1.
考点二 电磁感应中的能量问题
1.电磁感应中的能量转化
2.求解焦耳热Q的三种方法
例 3 [2024·北京市模拟]
如图所示,AB、CD为两个平行的、不计电阻的水平光滑金属导轨,置于方向垂直导轨平面向里、磁感应强度为B的匀强磁场中.AB、CD的间距为L,左右两端均接有阻值为R的电阻.质量为m、长为L且电阻不计的导体棒MN放在导轨上,与导轨接触良好,并与轻质弹簧组成弹簧振动系统.开始时,弹簧处于自然长度,导体棒MN具有水平向左的初速度v0,经过一段时间,导体棒MN第一次运动到最右端,这一过程中AC间的电阻R上产生的焦耳热为Q,则(  )
A. 导体棒水平方向做简谐运动
B.初始时刻导体棒所受的安培力大小为
C.当导体棒第一次到达最右端时,弹簧具有的弹性势能为
D.当导体棒再次回到初始位置时,AC间的电阻R的热功率小于
例 4 如图甲所示,游乐园中的过山车虽然惊险刺激,但也有多种措施保证了它的安全运行.其中磁力刹车是为保证过山车在最后进站前的安全设计的一种刹车形式,磁场很强的钕磁铁安装在轨道上,刹车金属框安装在过山车底部.其简化模型如图所示,将刹车金属框看作为一个边长为L,总电阻为R的单匝正方形线框,则过山车返回水平站台前的运动可以简化如下:线框沿着光滑斜面下滑s后,下边框进入匀强磁场时线框开始减速,下边框出磁场,线框刚好开始做匀速直线运动.已知斜面与水平面的夹角为θ,过山车的总质量为m,磁场区上下边界间的距离也为L,磁感应强度大小为B,方向垂直斜面向上,重力加速度为g,求:
(1)线框刚进入磁场上边界时,从斜面上方俯视线框求感应电流的方向和此时感应电流的大小.
(2)线框穿过磁场的过程中产生的焦耳热.
考点三 电磁感应与动量的综合问题
在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.
(1)求电荷量或速度:BlΔt=mv2-mv1,q=t.
(2)求时间:Ft=I冲=mv2-mv1,I冲=BlΔt=Bl.
(3)求位移:-BlΔt=-=0-mv0,
即-x=m(0-v0).
考向1 动量定理在电磁感应中的应用
例 5 [2023·湖南卷]如图,两根足够长的光滑金属直导轨平行放置,导轨间距为L,两导轨及其所构成的平面均与水平面成θ角,整个装置处于垂直于导轨平面斜向上的匀强磁场中,磁感应强度大小为B.现将质量均为m的金属棒a、b垂直导轨放置,每根金属棒接入导轨之间的电阻均为R.运动过程中金属棒与导轨始终垂直且接触良好,金属棒始终未滑出导轨,导轨电阻忽略不计,重力加速度为g.
(1)先保持棒b静止,将棒a由静止释放,求棒a匀速运动时的速度大小v0;
(2)在(1)问中,当棒a匀速运动时,再将棒b由静止释放,求释放瞬间棒b的加速度大小a0;
(3)在(2)问中,从棒b释放瞬间开始计时,经过时间t0,两棒恰好达到相同的速度v,求速度v的大小,以及时间t0内棒a相对于棒b运动的距离Δx.
考向2 动量守恒定律在电磁感应中的应用
例 6 (多选)[2023·辽宁卷]
如图,两根光滑平行金属导轨固定在绝缘水平面上,左、右两侧导轨间距分别为d和2d,处于竖直向上的磁场中,磁感应强度大小分别为2B和B.已知导体棒MN的电阻为R、长度为d,导体棒PQ的电阻为2R、长度为2d,PQ的质量是MN的2倍.初始时刻两棒静止,两棒中点之间连接一压缩量为L的轻质绝缘弹簧.释放弹簧,两棒在各自磁场中运动直至停止,弹簧始终在弹性限度内.整个过程中两棒保持与导轨垂直并接触良好,导轨足够长且电阻不计.下列说法正确的是(  )
A.弹簧伸展过程中,回路中产生顺时针方向的电流
B.PQ速率为v时,MN所受安培力大小为
C.整个运动过程中,MN与PQ的路程之比为2∶1
D.整个运动过程中,通过MN的电荷量为
例 7 [2023·全国甲卷]如图,水平桌面上固定一光滑U型金属导轨,其平行部分的间距为l,导轨的最右端与桌面右边缘对齐,导轨的电阻忽略不计.导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为B.一质量为m、电阻为R、长度也为l的金属棒P静止在导轨上.导轨上质量为3m的绝缘棒Q位于P的左侧,以大小为v0的速度向P运动并与P发生弹性碰撞,碰撞时间很短.碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点.P在导轨上运动时,两端与导轨接触良好,P与Q始终平行.不计空气阻力.求:
(1)金属棒P滑出导轨时的速度大小;
(2)金属棒P在导轨上运动过程中产生的热量;
(3)与P碰撞后,绝缘棒Q在导轨上运动的时间.
核心素养提升 教你规范答题
典例 如图所示,两根足够长的平行金属导轨固定在倾角θ=37°的斜面上,两导轨垂直于斜面与水平面的交线ef,间距L=0.6 m,导轨电阻不计.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为虚线MN.虚线MN与两导轨垂直,区域Ⅰ中的匀强磁场方向竖直向下,区域Ⅱ中的匀强磁场方向竖直向上,两磁场的磁感应强度大小均为B=1 T.在区域Ⅰ中,将质量m1=0.21 kg、电阻R1=0.1 Ω的金属棒ab放在导轨上,金属棒ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg、电阻R2=0.1 Ω的光滑金属棒cd置于导轨上使其由静止开始下滑,金属棒cd在滑动过程中始终处于区域Ⅱ的磁场中,两金属棒长度均为L且始终与导轨垂直且与导轨保持良好接触(最大静摩擦力等于滑动摩擦力,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8).
(1)求金属棒ab刚要向上滑动时,金属棒cd的速度大小v;
(2)从金属棒cd开始下滑到金属棒ab刚要向上滑动的过程中,金属棒cd滑动的距离x=3.5 m,求此过程中金属棒ab上产生的热量Q;
(3)求金属棒cd滑动距离3.5 m的过程中流过金属棒ab某一横截面的电荷量q.
[教你规范答题]
专题强化十二 电磁感应中的动力学、能量和动量问题
考点一
例1 解析:导轨的速度v2>v1,因此对导体棒受力分析可知导体棒受到向右的摩擦力以及向左的安培力,摩擦力大小为f=μmg=2 N
导体棒的安培力大小为F1=f=2 N
由左手定则可知导体棒的电流方向为N→M→D→C→N,导体框受到向左的摩擦力,向右的拉力和向右的安培力,安培力大小为
F2=f-m0g=1 N
由左手定则可知B2的方向为垂直纸面向里,A错误,B正确;
对导体棒分析F1=B1IL
对导体框分析F2=B2IL
电路中的电流为I=
联立解得v2=3 m/s
C错误,D正确.故选BD.
答案:BD
例2 解析:(1)撤去小立柱时,导体棒P刚刚进入三角形磁场区域,没有感应电动势,则对Q棒受力分析a0==g sin θ-μg cos θ=(10×0.6-0.5×10×0.8)m/s2=2 m/s2.
(2)只有P棒在切割磁感线,所以感应电动势为
E==,
磁场穿过闭合电路的面积与时间的关系为
S=(v0t)(2tan α×v0t)=t2,
所以=S′=t,
E===t=2×1×0.1×0.52t=0.05t(V),
I== A=0.1t(A).
(3)对Q棒受力分析
ma=mg sin θ-μ(mg cos θ+BIL),
当Q棒速度达到最大时
mg sin θ=μ(mg cos θ+BIL),
解得此时I=0.4 A,t1=4 s,
三角形磁场总长有L1= m=5 m,
而P棒在4 s内运动的位移为2 m,小于L1.
Q棒的加速度与时间的关系为
a=g sin θ-μ(g cos θ+)=(2-0.5t)m/s2,
画出Q棒的a t图,则Q棒速度的变化量等于图线下方与坐标轴围成的面积,则Q棒达到的最大速度vm为
vm=Δv= m/s=4 m/s,
所用时间t1=4 s.
答案:(1)2 m/s2 (2)I=0.1t(A) (3)4 m/s,4 s
考点二
例3 解析:导体棒运动过程中,克服安培力做功,电阻产生焦耳热,则棒和弹簧的机械能有损失,则当棒再次回到初始位置时速度小于v0,导体棒水平方向做的不是简谐运动,则导体棒回到初始位置时产生的感应电动势E1答案:D
例4 解析:(1)线框刚进入磁场上边界时,从斜面上方俯视线框,根据右手定则可知,感应电流的方向为顺时针方向.线框刚进入磁场上边界时,由动能定理得mgs sin θ=mv2
又因为E=BLv,I=
所以I=
(2)下边框出磁场时,线框恰好做匀速直线运动,有mg sin θ=BI′L
又因为E′=BLv′,I′=
所以v′=
由开始下滑到刚刚离开时,由功能关系得mg sin θ(s+2L)=Q+mv′2
线框穿过磁场的过程中产生的焦耳热为Q=mg sin θ(s+2L)-
答案:(1)顺时针方向, (2)mg sin θ(s+2L)-
考点三
例5 解析:(1)a导体棒在运动过程中重力沿斜面的分力和a棒的安培力相等时做匀速运动,由法拉第电磁感应定律可得E=BLv0
由闭合电路欧姆定律及安培力公式可得I=,F=BIL
a棒受力平衡可得mg sinθ=BIL
联立解得v0=
(2)由右手定则可知导体棒b中电流向里,b棒受沿斜面向下的安培力,此时电路中电流不变,则对b棒,根据牛顿第二定律可得mg sin θ+BIL=ma0
解得a0=2g sin θ
(3)释放b棒后a棒受到沿斜面向上的安培力,在到达共速时对a棒,由动量定理得mg sin θt0-BLt0=mv-mv0
b棒受到向下的安培力,对b棒,由动量定理得mg sin θt0+BLt0=mv
联立解得
v=g sin θ·t0+
此过程流过b棒的电荷量为q,则有
q=t0
由法拉第电磁感应定律可得
==
联立可得Δx=
答案:(1) (2)2g sin θ (3)
例6 解析:弹簧伸展过程中,根据右手定则可知,回路中产生顺时针方向的电流,选项A正确;任意时刻,设电流为I,则PQ受安培力FPQ=BI·2d,方向向左;MN受安培力FMN=2BId,方向向右,可知两棒系统受合外力为零,动量守恒,设PQ质量为2m,则MN质量为m, PQ速率为v时,则2mv=mv′
解得v′=2v
回路的感应电流I==
MN所受安培力大小为FMN=2BId=
选项B错误;
两棒最终停止时弹簧处于原长状态,由动量守恒可得
mx1=2mx2
x1+x2=L
可得最终MN向左移动x1=
PQ向右移动x2=
因任意时刻两棒受安培力和弹簧弹力大小都相同,设整个过程两棒受的弹力的平均值为F弹,安培力平均值F安,则整个过程根据动能定理
F弹x1-F安xMN=0
F弹x2-F安xPQ=0
可得==
选项C正确;
两棒最后停止时,弹簧处于原长位置,此时两棒间距增加了L,由上述分析可知,MN向左移动,PQ向右移动,则
q=Δt===
选项D错误.故选AC.
答案:AC
例7 解析:(1)由于绝缘棒Q与金属棒P发生弹性碰撞,根据动量守恒和机械能守恒可得3mv0=3mvQ+mvP

联立解得
vP=v0,vQ=v0
由题知,碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P滑出导轨时的速度大小为
v′P=vQ=v0
(2)根据能量守恒有
=+Q
解得Q=
(3)P、Q碰撞后,对金属棒P分析,根据动量定理得
-BlΔt=mv′P-mvP

q=Δt,===
联立可得x=
由于Q为绝缘棒,无电流通过,做匀速直线运动,故Q运动的时间为
t==
答案:(1)v0  (3)
专题强化十一 电磁感应中的图像和电路问题
1. 掌握电磁感应中电路问题的求解方法.
2.会计算电磁感应电路问题中电压、电流、电荷量、热量等物理量.
3.能够通过电磁感应图像,读取相关信息,应用物理规律求解问题.
考点一 电磁感应中的电路问题
1.电磁感应中的电源
(1)做切割磁感线运动的导体或磁通量发生变化的回路相当于电源.
电动势:E=Blv或E=n,这部分电路的阻值为电源内阻.
(2)用右手定则或楞次定律与安培定则结合判断,感应电流流出的一端为电源正极.
2.解决电磁感应中电路问题的“三部曲”
考向1 感生电动势的电路问题
例 1 如图所示,单匝正方形线圈A边长为0.2 m,线圈平面与匀强磁场垂直,且一半处在磁场中,磁感应强度随时间变化的规律为B=(0.8-0.2t) T.开始时开关S未闭合,R1=4 Ω,R2=6 Ω,C=20 μF,线圈及导线电阻不计.闭合开关S,待电路中的电流稳定后.求:
(1)回路中感应电动势的大小;
(2)电容器所带的电荷量.
考向2 动生电动势的电路问题
例 2 (多选)
如图所示,光滑的金属框CDEF水平放置,宽为L,在E、F间连接一阻值为R的定值电阻,在C、D间连接一滑动变阻器R1(0≤R1≤2R).框内存在着竖直向下的匀强磁场.一长为L、电阻为R的导体棒AB在外力作用下以速度v匀速向右运动.金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是(  )
A.ABFE回路的电流方向为逆时针,ABCD回路的电流方向为顺时针
B.左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BLv
C.当滑动变阻器接入电路中的阻值R1=R时,导体棒两端的电压为BLv
D.当滑动变阻器接入电路中的阻值R1=时,滑动变阻器的电功率为
例 3 如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场.长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO′上,随轴以角速度ω匀速转动,在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态.已知重力加速度为g,不计其它电阻和摩擦,下列说法正确的是(  )
A.棒产生的电动势为Bl2ω
B.微粒的电荷量与质量之比为
C.电阻消耗的电功率为
D.电容器所带的电荷量为CBr2ω
考点二 电磁感应中的图像问题
解决电磁感应图像问题的“三点关注”
考向1 根据电磁感应现象选择图像
例 4 [2023·辽宁卷]如图,空间中存在水平向右的匀强磁场,一导体棒绕固定的竖直轴OP在磁场中匀速转动,且始终平行于OP.导体棒两端的电势差u随时间t变化的图像可能正确的是(  )
例 5 [2024·上海统考模拟预测]如图甲所示,有一光滑导轨处于匀强磁场中,一金属棒垂直置于导轨上,对其施加外力,安培力变化如图乙所示,取向右为正方向,则外力随时间变化图像为(  )
考向2 根据图像分析判断电磁感应的过程
例 6 [2024·湖南校联考模拟预测]如图甲所示,PQNM是倾角θ=37°、表面粗糙的绝缘斜面,abcd是匝数n=20、质量m=1 kg、总电阻R=2 Ω、边长L=1 m的正方形金属线框.线框与斜面间的动摩擦因数μ=0.8,在OO′NM的区域加上垂直斜面向上的匀强磁场,使线框的一半处于磁场中,磁场的磁感应强度B随时间t变化的图像如图乙所示.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是(  )
A.0~6 s内,线框中的感应电流大小为1 A
B.0~6 s内,线框产生的焦耳热为6 J
C.t=6 s时,线框受到的安培力大小为8 N
D.t=10 s时,线框即将开始运动
例 7 [2023·广东卷]光滑绝缘的水平面上有垂直平面的匀强磁场,磁场被分成区域Ⅰ和Ⅱ,宽度均为h,其俯视图如图(a)所示,两磁场磁感应强度随时间t的变化如图(b)所示,0~τ时间内,两区域磁场恒定,方向相反,磁感应强度大小分别为2B0和B0,一电阻为R,边长为h的刚性正方形金属框abcd,平放在水平面上,ab、cd边与磁场边界平行.t=0时,线框ab边刚好跨过区域Ⅰ的左边界以速度v向右运动.在τ时刻,ab边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,如图(a)中的虚线框所示.随后在τ~2τ时间内,Ⅰ区磁感应强度线性减小到0,Ⅱ区磁场保持不变;2τ~3τ时间内,Ⅱ区磁感应强度也线性减小到0.求:
(1)t=0时线框所受的安培力F;
(2)t=1.2τ时穿过线框的磁通量Φ;
(3)2τ~3τ时间内,线框中产生的热量Q.
思维提升
电磁感应中图像问题的分析技巧
(1)对于图像选择问题常用排除法:先看方向再看大小及特殊点.
(2)对于图像的描绘:先定性或定量表示出所研究问题的函数关系,注意横、纵坐标表达的物理量及各物理量的单位,画出对应物理图像(常有分段法、数学法).
(3)对图像的理解:看清横、纵坐标表示的量,理解图像的物理意义.
专题强化十一 电磁感应中的图像和电路问题
考点一
例1 解析:(1)由法拉第电磁感应定律有E=S,S=L2,代入数据得E=4×10-3 V.
(2)由闭合电路的欧姆定律得I=,由部分电路的欧姆定律得U=IR2,电容器所带电荷量为Q=CU=4.8×10-8 C.
答案:(1)4×10-3 V (2)4.8×10-8 C
例2 解析:根据楞次定律可知,ABFE回路电流方向为逆时针,ABCD回路电流方向为顺时针,故A正确;根据法拉第电磁感应定律可知,感应电动势E=BLv,故B错误;当R1=R时,外电路总电阻R外=,因此导体棒两端的电压即路端电压应等于BLv,故C错误;该电路电动势E=BLv,电源内阻为R,当滑动变阻器接入电路中的阻值R1=时,干路电流为I=,滑动变阻器所在支路电流为I,容易求得滑动变阻器电功率为,故D正确.
答案:AD
例3 解析:棒产生的电动势为E=Br·ωr=Br2ω,A错误;金属棒电阻不计,故电容器两极板间的电压等于棒产生的电动势,微粒的重力与其受到的电场力大小相等,有q=mg,可得=,B正确;电阻消耗的电功率P==,C错误;电容器所带的电荷量Q=CE=CBr2ω,D错误.
答案:B
考点二
例4 解析:如图所示
设导体棒匀速转动的速度为v,导体棒从M到N过程,棒转过的角度为θ,则导体棒垂直磁感线方向的分速度为v⊥=v cos θ
根据右手定则可知,u=BLv⊥,可知导体棒两端的电势差u随时间t变化的图像为余弦图像.故选C.
答案:C
例5 解析:由于E=BLv,E=IR,FA=BIL
联立得,FA=
再结合楞次定律,可知金属棒刚开始向右做匀减速直线运动,后向左做匀加速直线运动,且加速度一直为a=,方向向左.综上,当v=0时,即t=t0时,F≠0,且向左,C项符合题意.故选C.
答案:C
例6 解析:由图乙知B=0.1t+0.2(T),=0.1 T/s,设线框即将运动的时间为t,则nBIL=mg sin θ+μmg cos θ,线框未动时,根据法拉第电磁感应定律E=n·L2=1 V,由闭合电路欧姆定律得I==0.5 A,解得t=10.4 s,0~10.4 s内线框处于静止状态,线框中的感应电流大小为0.5 A,故A、D错误;0~6 s内,框产生焦耳热为Q=I2Rt=0.52×2×6 J=3 J,故B错误;t=6 s时,磁感应强度为B=0.1t+0.2(T)=0.1×6+0.2 T=0.8 T,线框受到的安培力大小为F=nBIL=20×0.8×0.5×1 N=8 N,故C正确.故选C.
答案:C
例7 解析:(1)由图可知t=0时线框切割磁感线的感应电动势为E=2B0hv+B0hv=3B0hv
则感应电流大小为I==
所受的安培力为F=2B0h+B0h=,方向水平向左;
(2)在τ时刻,ab边运动到距区域Ⅰ的左边界处,线框的速度近似为零,此时线框被固定,则t=1.2τ时穿过线框的磁通量为Φ=1.6B0h·h-B0h·h=,方向垂直纸面向里;
(3)2τ~3τ时间内,Ⅱ区磁感应强度也线性减小到0,则有E′===
感应电流大小为I′==
则2τ~3τ时间内,线框中产生的热量为Q=I′2Rτ=.
答案:,方向水平向左 (2)
同课章节目录