人教版七年级数学下册 11.2.2 一元一次不等式的应用(含解析)

文档属性

名称 人教版七年级数学下册 11.2.2 一元一次不等式的应用(含解析)
格式 docx
文件大小 295.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2025-02-11 14:54:19

图片预览

文档简介

11.2.2 一元一次不等式的应用
一、单选题
1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小澜得分要超过90分,他至少要答对的题数为(  )
A.12道 B.13道 C.14道 D.15道
2.某种出租车的收费标准是:起步价5元(行驶距离不超过3km,只需付5元车费);超过3km以后,每增加1km,加收1.2元(不足1km按1km计).小明乘这种出租车从甲地到乙地共支付车费11元.设从甲地到乙地的车程为xkm,则x的最大值是(   )
A.11 B.8 C.7 D.5
3.某品牌洗地机的进价为2000元,商店以2400元的价格出售.元旦期间,商店为让利于顾客,计划以利润率不低于的价格降价出售,则该洗地机最多可降价多少元?若设洗地机可降价元,则可列不等式为(  )
A. B.
C. D.
4.某种笔记本原售价是每本7元,凡一次购买3本或以上可享受优惠价格,第1种:3本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是( )
A.7本 B.8本 C.9本 D.10本
5.云南保山吾悦广场,位于保山市隆阳区永昌路与拱北路交汇处,这个广场属于全国连锁的百货广场,这里入驻了很多品牌商品,这些商品种类多样,包含了人们衣食住行,方便了大家的生活.某种商品进价为800元,标价1200元,由于疫情的影响,商店准备打折促销,但要保证利润率不低于20%,则至多可以打( )
A.6折 B.7折 C.8折 D.9折
6.某图书馆阅览室出售会员卡,每张会员卡60元,只限本人使用,凭会员卡购入场券每张1元,不凭会员卡购入场券每张3元,在什么情况下,购会员卡比不购会员卡更合算( )
A.购票少于30次 B.购票多于30次 C.购票少于20次 D.购票多于20次
7.斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路,某人行横道全长24米,小明以1.2m/s的速度过该人行横道,行至处时,9秒倒计时灯亮了,小明要在红灯亮起前通过马路,他的速度至少要提高到原来的( )
A.1.1倍 B.1.4倍 C.1.5倍 D.1.6倍
8.小茗要从石室联中到春熙路IFS国际金融中心,两地相距1.7千米,已知他步行的平均速度为90米/分钟,跑步的平均速度为210米/分钟,若他要在不超过12分钟的时间内到达,那么他至少需要跑步多少分钟?设他要跑步的时间为x分钟,则列出的不等式为(  )
A. B.
C. D.
9.用长为 40 m 的铁丝围成如图所示的图形,一边靠墙,墙的长度 m,要使靠墙的一边长不小于 25 m,那么与墙垂直的一边长 x(m)的取值范围为(  )
A. B. C. D.
10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为 ( )
A.10 B.9 C.8 D.7
二、填空题
11.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm,已知以后此树树围平均每年增长3cm,若生长x年后此树树围超过90cm,则x满足的不等式为___________.
12.如图1,一个容量为600cm3的杯子中装有300cm3的水,将四颗相同的玻璃球放入这个杯子中,结果水没有满,如图2,设每颗玻璃球的体积为xcm3,根据题意可列不等式为______.
13.三个连续奇数的和不大于27,则有________组这样的正奇数.
14.某业主贷款22000元购进一台机器,生产某种产品.已知产品的成本每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每月能生产、销售2000个产品,问至少 _____个月后能赚回这台机器的贷款.
15.某种出租车的收费标准是起步价8元(即距离不超过3km,都付8元车费),超过3km以后,每增加1km,加收1.2元(不足1km按1km计),若某人乘这种出租车从甲地到乙地经过的路程是xkm,共付车费14元,那么x的最大值是________.
16.北京冬(残)奥会吉祥物“冰墩墩”和“雪容融”受到人们的普遍喜爱,某电商以元/件的价格购进一批“冰墩墩”和“雪容融”玩具套装礼品,标价元/件出售,“双十一”搞打折促销,为了保证利润率不低于,则每件套装礼品最多可打______折.
17.一张试卷共道题,做对一题得分,做错或不做一题扣分,小辛做了全部试题,若要成绩及格注:分及以上成绩为及格,那么小辛至少要做对______道题.
18.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过300元后,超出的部分按90%收费;在乙商场累计购物超过200元后,超出的部分按95%收费.设顾客预计累计购物x元().若顾客到甲商场购物花费少,则x的取值范围是______.
19.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多降___________元.
20.一艘轮船从某江上游的地匀速驶到下游的地用了10小时,从地匀速返回地用了不到12小时,这段江水流速为,设轮船在静水里的往返速度为,且此速度一直保持不变,请列出符合题意的一元一次不等式_______.
三、解答题
21.某俱乐部举行篮球联赛,组委会制定的赛制规则是:每个队都要比赛12场,每场比赛只分胜、负,胜1场积2分,负1场积1分,按积分高低确定出线名额.目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.根据组委会赛制规则可预测,这两个队完成所有比赛后,积分高的队伍可以出线,问雄鹰队在剩下的比赛中至少需胜多少场可确保出线?
22.美美服装厂接到订单,需要在六月份生产某种款式的连衣裙条,已知每名工人每天能生产条,服装厂安排名工人加工天后,又从兄弟厂借调若干工人一起参与加工,这才在规定期限内超额完成任务,问至少需借调多少名工人?
23.某工厂为了扩大生产,决定购买台机器用于生产零件,现有甲、乙两种机器可供选择,经调查,购买台甲型机器和台乙型机器共需要万元,购买一台甲型机器比购买一台乙型机器多万元,
(1)求甲、乙两型机器每台各多少万元?
(2)如果该工厂买机器的预算资金不超过万元,那么你认为该工厂至多购买甲型机器多少台?
24.某网店在“618购物节”前准备从厂家选购相同数量的、两种商品,已知种商品每件进价比种商品每件进价少20元,购进种商品需要1200元,购进种商品需要1000元.
(1)求、两种商品每件的进价分别是多少元;
(2)若种商品的售价为每件145元,种商品的售价为每件120元,该网店准备购进、两种商品共40件,且这两种商品的全部售出后总利润不少于920元,则种商品最多可购进多少件?
25.甲、乙两家商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.某顾客购买x元的该商品.
(1)当时,请直接回答该顾客在甲、乙两家商场购物花费的关系;
(2)当时,到哪家商场购物花费少?少花多少钱?(用含x的代数式表示)
(3)当时,到哪家商场购物花费少?
答案
一、单选题
1.B
【分析】设他答对x道题,则答错或不答道,根据答对的得分+答错或不答的得分的和超过90分建立不等式求出其解即可.
【详解】解:设他答对x道题,则答错或不答道.
由题意,得:,
解得:,
∵x为整数,
∴x为13.
故选:B.
2.B
【分析】根据题意和题目中的数据,可以列出相应的不等式,然后求解即可.
【详解】解:由题意可得,
5+(x-3)×1.2≤11,
解得x≤8,
∴x的最大值是8,
故选:B.
3.A
【分析】根据“以利润率不低于的价格降价出售”列一元一次不等式,求解即可.
【详解】解:根据题意,得.
故选:A.
4.D
【分析】设购买x本笔记本,根据题意得出第1种所需费用:,第2种所需费用:,利用第1种比第2种更优惠,列出不等式求解即可.
【详解】解:设购买x本笔记本,由题意可知,要使第1种比第2种更优惠,则:

解得:,
∴最少购买10本.
故选D.
5.C
【分析】设该商品打折销售,根据利润率(标价折扣率进价)进价建立不等式,解不等式即可得.
【详解】解:设该商品打折销售,
由题意得:,
解得,
则该商品至多可以打8折,
故选:C.
6.B
【分析】设购票x次,用含x的代数式表示出两种情况下的费用,列出不等式,即可求解.
【详解】解:设购票x次,
则凭会员卡购入场券需元,不凭会员卡购入场券需元,

解得,
即购票多于30次时,购会员卡比不购会员卡更合算.
故选B.
7.C
【分析】已经行至,说明还剩路程,设提速后的速度为,依题意列出不等式并求出解集即可.
【详解】解:设提速后的速度为,
依题意可得,
解得,
则,
故选:C.
8.C
【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.
【详解】解:根据题意列不等式为:,
故选:C.
9.D
【分析】根据题意和图形列出不等式即可解得.
【详解】根据题意和图形可得,
解得:,
故选:D
10.B
【分析】根据15名工人前期的工作量+12名工人后期的工作量<2160,列出不等式进行解答即可.
【详解】设原计划m天完成,开工x天后3人外出培训,
则有15am=2160,
得到am=144,
由题意得15ax+12(a+2)(m-x)<2160,
即:ax+4am+8m-8x<720,
∵am=144,
∴将其代入得:ax+576+8m-8x<720,
即:ax+8m-8x<144,
∴ax+8m-8x∴8(m-x)∵m>x,
∴m-x>0,
∴a>8,
∴a至少为9,
故选B.
二、填空题
11.
【分析】直接利用生长年数大于90,进而得出答案.
【详解】解:根据题意可得:.
故答案为:.
12.
【分析】设每颗玻璃球的体积为xcm3,根据不等关系式:4颗玻璃球的体积+水的体积小于杯子的容积,列出不等式即可.
【详解】解:设每颗玻璃球的体积为xcm3,根据题意得:

故答案为:.
13.4
【分析】设三个数中最小的数为,则另外两个数分别为,,根据三个数的和不大于27,即可得出关于的一元一次不等式,解之即可得出的取值范围,再结合为正奇数,即可得出这样的正奇数一共有4组.
【详解】解:设三个数中最小的数为,则另外两个数分别为,,
依题意得:,
解得:,
又为正奇数,
可以取1,3,5,7,
这样的正奇数一共有4组.
故答案为:4.
14.5
【分析】设x个月后能赚回这台机器的贷款,利用总利润=每个的利润×每月的产量×时间,结合总利润不少于这台机器的贷款,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】解:设x个月后能赚回这台机器的贷款,
依题意得:(8-5-8×10%)×2000x≥22000,
解得:x≥5,
∴至少5个月后能赚回这台机器的贷款.
故答案为:5.
15.8
【分析】由车费=起步价+1.2×超出3km路程结合共付车费14元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】解:依题意,得:8+1.2(x-3)≤14,
解得:x≤8.
∴x的最大值是8,
故答案为8.
16.7.5
【分析】设每件套装礼品打折销售,根据“以元/件的价格购进一批“冰墩墩”和“雪容融”玩具套装礼品,标价元/件出售,“双十一”搞打折促销,为了保证利润率不低于,”列出不等式,即可求解.
【详解】解:设每件套装礼品打折销售,
依题意得:,
解得:,
每件套装礼品最多可打折.
故答案为:.
17.
【分析】设小辛做对道题,根据共有道选择题,对于每道题答对了得分,做错或不做扣分,小辛若想考试成绩及格,可列不等式求解.
【详解】解:设小辛要做对道题,依题意有

解得:.
故小辛至少要做对道题.
故答案为:.
18.
【分析】分别用含x的代数式表示出两个商场购物的花费,然后结合顾客到甲商场的花费少列出不等式求解即可
【详解】解:由题意得:,
∴,
∴,
故答案为:.
19.
【分析】设降x元,列出不等式解不等式求出x的范围,从而得到x的最大值即可.
【详解】解:设降x元,
根据题意得,
解得.
所以最多可降元.
故答案为:.
20.10(v+3)≤12(v-3)
【分析】根据顺水航行10小时的路程≤12小时逆水航行的路程即可列出不等式.
【详解】解:∵这段江水流速为,设轮船在静水里的往返速度为,且此速度一直保持不变,
∴船在顺水中的速度为(v+3),船在逆水中的速度为(v-3),
∵轮船从某江上游的地匀速驶到下游的地用了10小时,从地匀速返回地用了不到12小时,
∴可列方程10(v+3)≤12(v-3),
故答案为:10(v+3)≤12(v-3).
三、解答题
21.解:目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.
若蓝狮队剩下的3场比赛都获得了胜利,则7胜5负,得(分),
雄鹰队的战绩是4胜2负,已获得(分),
设雄鹰队在剩下的比赛中至少需胜场可确保出线,则输掉的比赛有场,则

解得:,
∵为正整数,
∴的最小值为:,
答:雄鹰队在剩下的比赛中至少需胜4场可确保出线.
22.设借调名工人,根据题意得:

解得:,
为整数,
最小取,
∴至少需借调名工人.
23.(1)解:设甲机器每台万元,乙机器每台万元,根据题意得:

解得:,
答:甲机器每台万元,乙机器每台万元.
(2)解:设该工厂购买甲型机器台,则购买乙型机器台,根据题意得:

解得:,
答:该工厂至多购买甲型机器台.
24.(1)解:根据题意,购进种商品比购进种商品一共少元,
种商品每件进价比种商品每件进价少20元,
所以(件,
商品的进价:(元;
商品的进价:(元;
答:甲、乙两种商品每件的进价分别是120元、100元;
(2)解:设该网店购进乙种商品件,则购进甲种商品件,
列不等式:,
解得:,
答:乙种商品最多可购进16件.
25.(1)当累计购物不超过50元时,在甲乙两商场的花费一样;
(2)当累计消费超过50元而不超过100元时,在乙商场享受优惠,在甲商场不享受优惠,因此应该到乙商场购买;
少花元钱.
(3)当累计消费超过100元时,设累计消费x元,
甲商场消费为:元,
在乙商场消费为:元,
当,解得:,
当,解得:,
当,解得:,
综上所述,当累计消费大于100元少于150元时,在乙商店花费少;
当累计消费大于150元时,在甲商店花费少;
当累计消费等于150元时,在甲乙商场花费一样.
同课章节目录