/ 让教学更有效 精品试卷 | 数学
专题8 函数与平面直角坐标系
1.(2024·内蒙古呼和浩特·模拟预测)下列关于两个变量关系的四种表达式中,正确的是( )
①圆的周长C是半径r的函数;
②表达式中,y是x的函数;
③下表中,n是m的函数;
m 1 2 3
n 8 3 2
④图中,曲线表示y是x的函数.
A.①③ B.②④ C.①②③ D.①②③④
【答案】C
【分析】本题主要考查了函数的概念,对于函数概念需要理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.根据函数的定义分别判断即可.
【详解】解:①∵,∴圆的周长是半径的函数,正确;
②表达式中,对于的每一个取值,都有唯一确定的值与之对应,是的函数,正确;
③是的函数,正确;
④如图中,对于的每一个取值,有不唯一确定的值与之对应,不是的函数.
故选:C.
2.下列图像不能反映y是x的函数的是( )
A.B.C. D.
【答案】C
【分析】此题考查函数的概念和图象,关键是根据当x取一值时,y有唯一与它对应的值判断.
根据函数的概念解答即可.
【详解】解:A、当x取一值时,y有唯一与它对应的值,y是x的函数,故本选项不符合题意;
B、当x取一值时,y有唯一与它对应的值,y是x的函数,故本选项不符合题意;
C、当x取一值时,y有两个值与其对应,y不是x的函数,故本选项符合题意;
D、当x取一值时,y有唯一与它对应的值,y是x的函数,故本选项不符合题意.
故选:C.
3.如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为(细实线)表示铁桶中水面高度,(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则随时间变化的函数图象大致为( )
A.B.C.D.
【答案】C
【分析】根据特殊点的实际意义即可求出答案.
【详解】解:根据图象知,时,铁桶注满了水,,是一条斜线段,,是一条水平线段,
当时,长方体水池开始注入水;当时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当时,长方体水池满了水,
∴开始是一段陡线段,后变缓,最后是一条水平线段,
观察函数图象,选项C符合题意,
故选:C.
【总结】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
4.(2024·山东淄博·中考真题)某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从地匀速出发,甲健步走向地.途中偶遇一位朋友,驻足交流后,继续以原速步行前进;乙因故比甲晚出发,跑步到达地后立刻以原速返回,在返回途中与甲第二次相遇.下图表示甲、乙两人之间的距离与甲出发的时间之间的函数关系.( )
那么以下结论:
①甲、乙两人第一次相遇时,乙的锻炼用时为;
②甲出发时,甲、乙两人之间的距离达到最大值;
③甲、乙两人第二次相遇的时间是在甲出发后;
④,两地之间的距离是.
其中正确的结论有:
A.①②③ B.①②④ C.①③④ D.②③④
【答案】B
【分析】本题考查了函数图象以及二元一次方程组的应用;①由乙比甲晚出发及当时第一次为,可得出乙出发时两人第一次相遇,进而可得出结论①正确;②观察函数图象,可得出当时,取得最大值,最大值为,进而可得出结论②正确;③设甲的速度为 ,乙的速度为,利用路程速度时间,可列出关于,的二元一次方程组,解之可得出,的之,将其代入中,可得出甲、乙两人第二次相遇的时间是在甲出发后,进而可得出结论③错误;④利用路程速度时间,即可求出,两地之间的距离是.
【详解】解:①乙比甲晚出发,且当时,,
乙出发时,两人第一次相遇,
既甲、乙两人第一次相遇时,乙的锻炼用时为,结论①正确;
②观察函数图象,可知:当时,取得最大值,最大值为,
甲出发时,甲、乙两人之间的距离达到最大值,结论②正确;
③设甲的速度为,乙的速度为,
根据题意得:,
解得:,
∴,
甲、乙两人第二次相遇的时间是在甲出发后,结论③错误;
④,
,两地之间的距离是,结论④正确.
综上所述,正确的结论有①②④.
故选:B.
5.(2024·上海·模拟预测)函数的定义域为 .
【答案】且
【分析】本题考查求自变量的取值范围,根据,二次根式有意义以及分式有意义的条件,进行求解即可.
【详解】解:由题意,得:,解得:且;
故答案为:且.
6.(2024·黑龙江大兴安岭地·中考真题)甲、乙两货车分别从相距的A、B两地同时出发,甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,乙货车沿同一条公路从B地驶往A地,但乙货车到达配货站时接到紧急任务立即原路原速返回B地,结果比甲货车晚半小时到达B地.如图是甲、乙两货车距A地的距离与行驶时间之间的函数图象,结合图象回答下列问题:
(1)甲货车到达配货站之前的速度是 ,乙货车的速度是 ;
(2)求甲货车在配货站卸货后驶往B地的过程中,甲货车距A地的距离与行驶时间之间的函数解析式;
(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.
【答案】(1)30,40
(2)的函数解析式是
(3)经过1.5h或或5h甲、乙两货车与配货站的距离相等
【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.
(1)由图象可知甲货车到达配货站路程为,所用时间为,乙货车到达配货站路程为,到达后返回,所用时间为,根据速度=距离÷时间即可得;
(2)甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,由图象结合已知条件可知和点,再利用待定系数法求出y与x的关系式即可得答案;
(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B地后、甲货车卸货,半小时后继续驶往B地,三种情况与配货站的距离相等,分别列方程求出x的值即可得答案.
【详解】(1)解:由图象可知甲货车到达配货站路程为105km,所用时间为3.5h,所以甲货车到达配货站之前的速度是()
∴乙货车到达配货站路程为,到达配货站时接到紧急任务立即原路原速返回B地,总路程为240km,总时间是6h,
∴乙货车速度,
故答案为:30;40
(2)甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,由图象可知和点
设
∴
解得:,
∴甲货车距A地的距离与行驶时间之间的函数解析式
(3)设甲货车出发,甲、乙两货车与配货站的距离相等,
①两车到达配货站之前:,
解得:,
②乙货车到达配货站时开始返回,甲货车未到达配货站:,
解得:,
③甲货车在配货站卸货后驶往B地时:,
解得:,
答:经过或或甲、乙两货车与配货站的距离相等.
一.变量与常量
变量:在一个变化过程中,数值发生变化的量称为变量.
常量:在一个变化过程中,数值始终不变的量称为常量.
【补充】变量和常量是相对而言的,判断的前提是“在同一个变化过程中”.当变化过程改变时,同一个量的身份也可能随之改变.
2.函数
定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数.
【注意】对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个,如函数y=|x|,当x=±1时,y的值都是1.
3.函数值
函数值:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值.
4.函数的表示方法
表示法 定义 优点 缺点
列表法 把自变量x的一系列值和函数y的对应值列成一个表,这种表示函数关系的方法叫做列表法 自变量和与它对应的函数值数据一目了然 列出的对应值是有限的,而且在表格中也不容易看出自变量与函数的变化规律
解析法 两个变量之间的函数关系可以用等式来表示,这种表示两个变量之间函数关系的式子称为函数解析式,用函数解析式表示函数的方法叫做解析法 能准确地反映整个变化过程中自变量与函数的对应关系 求对应值时,往往要经过比较复杂的计算,有些函数不能用解析式表示出来
图像法 用图像来表示函数关系的方法叫做图像法 形象的把自变量和函数值的关系表示出来 图像中只能得到近似的数量关系
【注意】并不是所有的函数都可以用这三种方法表示出来.例如气温与时间的函数关系,只能用列表法和图像法表示,而不能用解析式法表示,
二、平面直角坐标系的相关概念
1.有序数对
定义:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).
2.平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直,并且原点重合的数轴,这样就建立了平面直角坐标系.
x轴、y轴:水平的数轴叫做x轴或横轴,通常取向右方向为正方向;
竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向.
原点:两坐标轴交点为平面直角坐标系原点.
坐标平面:坐标系所在的平面叫做坐标平面.
象限:x轴和y轴把坐标平面分成四部分,每个部分称为象限.按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.
【补充】
1)两条坐标轴不属于任何一个象限.
2)平面直角坐标系具有实际意义时,一般在横轴、纵轴的字母附上单位
3.点的坐标
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b),如图.
【易错点】
1)坐标平面内点的坐标是有序实数对,当a≠b时,有序数对(a,b)和(b,a)表示的是不同点的坐标.
2)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,即坐标平面内的点与有序数对是一一对应的.
三、点的坐标的有关性质
1.点的坐标特征
点M(x,y)所处的位置 坐标特征
象限内的点 点M在第一象限 M(正,正)
点M在第二象限 M(负,正)
点M在第三象限 M(负,负)
点M在第四象限 M(正,负)
坐标轴上的点 点M在x轴上 在x轴正半轴上 M(正,0)
在x轴负半轴上 M(负,0)
点M在y轴上 在y轴正半轴上 M(0,正)
在y轴负半轴上 M(0,负)
点M在原点 M(0,0)
象限角平分线上的点 点M在第一、三象限角平分线上 M(x,y)且x=y
点M在第二、四象限角平分线上 M(x,y)且x=-y
两点连线与坐标轴平行 MN∥x轴(或MN⊥y轴) M、N两点纵坐标相等且横坐标不相等
MN∥y轴(或MN⊥x轴) M、N两点横坐标相等且纵坐标不相等
2.点的坐标变化
对于平面直角坐标系上任意一点P(x,y)
变换方式 具体变换过程 变换后的坐标
平移变换 (a>0,b>0) 向左平移a个单位 (x-a,y)
向右平移a个单位 (x+a,y)
向上平移a个单位 (x,y+a)
向下平移a个单位 (x,y-a)
口诀:点的平移左减右加,上加下减.
变换方式 具体变换过程 变换后的坐标
对称变换 关于x轴对称 (x,-y)
关于y轴对称 (-x,y)
关于原点对称 (-x,-y)
口诀:关于谁对称谁不变,关于原点对称都改变.
旋转变换 绕原点顺时针旋转90° (y,-x)
绕原点逆时针旋转90° (-y,x)
绕原点顺/逆时针旋转180° (-x,-y)
3.点到坐标轴的距离
在平面直角坐标系中,已知点P,则
1)点P到轴的距离为;
2)点P到轴的距离为;
3)点P到原点O的距离为P=.
4、坐标系内点与点之间的距离
坐标系中有两点M与点N,则M,N两点之间的距离:
若AB∥x轴,则的距离为;
若AB∥y轴,则的距离为;
【易错易混】
1)原点既是x轴上的点,又是y轴上的点.
2)点的横坐标或纵坐标为0,说明点在y轴上或在x轴上.
3)已知点的坐标可以求出点到x轴、y轴的距离,应注意取相应坐标的绝对值.
4)点到坐标轴的距离与这个点的坐标是有区别的,表现在两方面:
①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;
②距离都是非负数,而坐标可以是负数.
5)因为横轴向右为正,所以点向右平移时横坐标变大,向左平移时横坐标变小,同理向上平移时纵坐标变大,向下平移纵坐标变小.
在平面直角坐标系中,将点向右平移2个单位后,得到的点的坐标是( )
A. B. C. D.
【答案】A
【分析】把点的横坐标加2,纵坐标不变,得到,就是平移后的对应点的坐标.
【详解】解:点向右平移2个单位长度后得到的点的坐标为.
故选:A.
【总结】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.
(2020·广东·中考真题)在平面直角坐标系中,点关于轴对称的点的坐标为( )
A. B. C. D.
【答案】D
【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.
【详解】点关于轴对称的点的坐标为(3,-2),
故选:D.
(2022·广东·中考真题)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是( )
A.2是变量 B.是变量 C.r是变量 D.C是常量
【答案】C
【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.
【详解】解:2与π为常量,C与r为变量,
故选:C.
【总结】本题考查变量与常量的概念,能够熟练掌握变量与常量的概念为解决本题的关键.
(2024·广东佛山·三模)如图,弹簧秤不挂重时弹簧长为,每挂重物体,弹簧伸长,在弹性限度(挂重不超过)内,弹簧的长度与所挂重之间的关系式是( )
A. B. C. D.
【答案】D
【分析】本题考查了列函数关系式,根据“每挂重物体,弹簧伸长”可得每挂重物体,弹簧伸长,由此可解.
【详解】解:由题意知,每挂重物体,弹簧伸长,
因此弹簧的长度与所挂重之间的关系式是,
故选D.
5.(2022·河北·二模)如图,甲、乙二人同时从A地出发,甲沿北偏东50°方向行走200m后到达B地,然后立即向正东方向行走200m,二人恰好在C地相遇,若乙中途未改变方向,则乙的行走方向为( )
A.北偏东30° B.北偏东40° C.北偏东70° D.无法确定
【答案】C
【分析】延长CB交AF于D,根据方位角得出∠DAB=50°,根据正东方向得出CD⊥AF,根据行走距离得出AB=BC,利用三角形外交性质得出∠ABC=∠DAB+∠ADB=50°+90°=140°,根据等腰三角形性质得出∠BAC=∠BCA=即可.
【详解】解:延长CB交AF于D,
∵甲沿北偏东50°方向行走200m后到达B地,然后立即向正东方向行走200m,二人恰好在C地相遇,
∴∠DAB=50°,CD⊥AF,AB=BC,
∴∠ABC=∠DAB+∠ADB=50°+90°=140°,
∴∠BAC=∠BCA=,
∴∠DAC=∠DAB+∠BAC=50°+20°=70°,
∴乙的行走方向为沿北偏东70°.
故选:C.
【总结】本题考查方位角的应用,方位角之间关系,三角形外角性质,等腰三角形判定与性质,中掌握方位角的应用,方位角之间关系,三角形外角性质,等腰三角形判定与性质是解题关键.
6.化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是( )
A.加入絮凝剂的体积越大,净水率越高
B.未加入絮凝剂时,净水率为
C.絮凝剂的体积每增加,净水率的增加量相等
D.加入絮凝剂的体积是时,净水率达到
【答案】D
【分析】本题考查从图像上获取信息,能从图像上获得信息是解题的关键,根据图像信息对选项进行判断即可
【详解】A、从图像上可以看到,加入絮凝剂的体积在达到最大净水率,之后净水率开始降低,不符合题意,选项错误;
B、未加入絮凝剂时,净水率为,故不符合题意,选项错误;
C、当絮凝剂的体积为时,净水率增加量为,絮凝剂的体积为时,净水率增加量为;故絮凝剂的体积每增加,净水率的增加量不相等,不符合题意,选项错误;
D、根据图像可得,加入絮凝剂的体积是时,净水率达到,符合题意,选项正确;
故选:D
7.(2024·四川凉山·中考真题)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度随时间变化的大致图象是( )
A. B. C. D.
【答案】C
【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.
【详解】解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度上升的很快,然后很慢,最后又上升的更快点,
故选:.
8.(2024·四川·中考真题)如图,在一个平面区域内,一台雷达探测器测得在点A,B,C处有目标出现.按某种规则,点A,B的位置可以分别表示为,则点C的位置可以表示为 .
【答案】
【分析】本题考查了坐标确定位置,根据题意得到圆圈数表示有序数对的第一个数,度数表示有序数对的第二个数是解题关键.根据题意可得:圆圈数表示有序数对的第一个数,度数表示有序数对的第二个数,可得答案.
【详解】解:∵A,B的位置分别表示为.
∴目标C的位置表示为.
故答案为:
9.如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为 .
【答案】
【分析】根据第一步马往外跳,第二步马再往回跳但路线不与第一步的路线重合,这样走两步后的落点与出发点距离最短.
【详解】解:如下图所示:
马第一步往外跳,可能的落点为A、B、C、D、E、F点,
第二步往回跳,但路线不与第一步的路线重合,这样走两步后的落点与出发点距离最短,
比如,第一步马跳到A点位置,第二步在从A点跳到G点位置,此时落点与出发点的距离最短为,
故答案为:.
【总结】本题借助象棋中的“马走日”的规则考察了两点之间的距离公式,解题的关键是读懂题意.
10.(2023·河北石家庄·模拟预测)如图,在直角坐标系中,已知、、三点,其中a、b,c满足关系式.
(1)求a、b、c的值;
(2)如果在第二象限内有一点,请用含m的式子表示四边形的面积;
(3)在(2)的条件下,是否存在点P,使四边形的面积与的面积相等?若存在,求出点P的坐标,若不存在,请说明理由?
【答案】(1),,
(2)
(3)存在点使
【分析】(1)用非负数的性质求解;
(2)把四边形的面积看成两个三角形面积和,用来表示;
(3)先求出的面积,根据题意,列出方程即可解决问题.
【详解】(1)解:,
,,,
,,;
(2)解:,
,
,
即;
(3)解:,
,
则,
存在点使.
【总结】本题考查了四边形综合题,属于掌握非负数的性质,三角形及四边形面积的求法,解决本题的关键是根据非负数的性质求出,,.
1.(2023·广东深圳·中考真题)如图1,在中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中长与运动时间t(单位:s)的关系如图2,则的长为( )
A. B. C.17 D.
【答案】C
【分析】根据图象可知时,点与点重合,得到,进而求出点从点运动到点所需的时间,进而得到点从点运动到点的时间,求出的长,再利用勾股定理求出即可.
【详解】解:由图象可知:时,点与点重合,
∴,
∴点从点运动到点所需的时间为;
∴点从点运动到点的时间为,
∴;
在中:;
故选C.
【总结】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出的长,是解题的关键.
2.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是( )
A.加入絮凝剂的体积越大,净水率越高
B.未加入絮凝剂时,净水率为
C.絮凝剂的体积每增加,净水率的增加量相等
D.加入絮凝剂的体积是时,净水率达到
【答案】D
【分析】本题考查从图像上获取信息,能从图像上获得信息是解题的关键,根据图像信息对选项进行判断即可
【详解】A、从图像上可以看到,加入絮凝剂的体积在达到最大净水率,之后净水率开始降低,不符合题意,选项错误;
B、未加入絮凝剂时,净水率为,故不符合题意,选项错误;
C、当絮凝剂的体积为时,净水率增加量为,絮凝剂的体积为时,净水率增加量为;故絮凝剂的体积每增加,净水率的增加量不相等,不符合题意,选项错误;
D、根据图像可得,加入絮凝剂的体积是时,净水率达到,符合题意,选项正确;
故选:D
3.(2024·江苏徐州·中考真题)小明的速度与时间的函数关系如图所示,下列情境与之较为相符的是( )
A.小明坐在门口,然后跑去看邻居家的小狗,随后坐着逗小狗玩
B.小明攀岩至高处,然后顺着杆子滑下来,随后躺在沙地上休息
C.小明跑去接电话,然后坐下来电话聊天,随后步行至另一个房间
D.小明步行去朋友家,敲门发现朋友不在家,随后步行回家
【答案】C
【分析】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.
根据函数图象分析即可.
【详解】解:由图象可知速度先随时间的增大而增大,然后直接降为0,过段时间速度增大,然后匀速运动,
则小明跑去接电话,然后坐下来电话聊天,随后步行至另一个房间,符合题意.
故选:C.
4.(2024·广东东莞·二模)如图1,在中,点为的中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为( )
A. B. C. D.
【答案】C
【分析】本题考查了动点问题的函数图象、解直角三角形、勾股定理,当时,点在点处,此时,则,当时,,求出,由勾股定理得出,求出,再由计算即可得解.
【详解】解:当时,点在点处,此时,则,
当时,,
,
则,
,
,
,
故选:C.
5.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A.5 B.7 C. D.
【答案】A
【分析】本题考查根据函数图象获取信息,完全平方公式,勾股定理,
由图象可知,面积最大值为6,此时当点P运动到点C,得到,由图象可知, 根据勾股定理,结合完全平方公式即可求解.
【详解】解:由图象可知,面积最大值为6
由题意可得,当点P运动到点C时,的面积最大,
∴,即,
由图象可知,当时,,此时点P运动到点B,
∴,
∵,
∴,
∴.
故选:A
6.(2024·广东茂名·一模)如图,在平面直角坐标系中,边长为2的正六边形的中心与原点O重合,轴,交y轴于点P.将绕点O顺时针旋转,每次旋转,则第2024次旋转结束时,点A的坐标为( )
A. B. C. D.
【答案】D
【分析】本题考查坐标与图形问题,点坐标规律型问题,解题的关键是学会探究规律的方法,首先确定点A的坐标,再根据4次一个循环,推出经过第2024次旋转后,点A的坐标即可.
【详解】解:正六边形边长为2,中心与原点O重合,轴,
∴,,,
∴,
∴,
第1次旋转结束时,点A的坐标为;
第2次旋转结束时,点A的坐标为;
第3次旋转结束时,点A的坐标为;
第4次旋转结束时,点A的坐标为;
∵将绕点O顺时针旋转,每次旋转,
∴4次一个循环,
∵,
∴经过第2024次旋转后,点A的坐标为,
故选:D.
7.(2024·湖北·中考真题)铁的密度约为,铁的质量与体积成正比例.一个体积为的铁块,它的质量为 .
【答案】79
【分析】本题考查了正比例函数的应用.根据铁的质量与体积成正比例,列式计算即可求解.
【详解】解:∵铁的质量与体积成正比例,
∴m关于V的函数解析式为,
当时,,
故答案为:79.
8.(2024·山东东营·中考真题)在弹性限度内,弹簧的长度是所挂物体质量的一次函数.一根弹簧不挂物体时长12.5cm,当所挂物体的质量为2kg时,弹簧长13.5cm.当所挂物体的质量为5kg时,弹簧的长度为 cm,
【答案】
【分析】本题考查了用待定系数法求一次函数的解析式、由自变量求函数值的知识点,解答时求出函数的解析式是关键.设与的函数关系式为,由待定系数法求出解析式,并把代入解析式求出对应的值即可.
【详解】解:设与的函数关系式为,
由题意,得,
解得:,
故与之间的关系式为:,
当时,.
故答案为:.
9.(2024·黑龙江大兴安岭地·中考真题)在函数中,自变量x的取值范围是 .
【答案】/
【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.
【详解】解:根据题意得,,且,
解得,,
故答案为:.
10.(2024·天津·中考真题)已知张华的家、画社、文化广场依次在同一条直线上,画社离家,文化广场离家.张华从家出发,先匀速骑行了到画社,在画社停留了,之后匀速骑行了到文化广场,在文化广场停留后,再匀速步行了返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.
请根据相关信息,回答下列问题:
(1)①填表:
张华离开家的时间 1 4 13 30
张华离家的距离
②填空:张华从文化广场返回家的速度为______;
③当时,请直接写出张华离家的距离关于时间的函数解析式;
(2)当张华离开家时,他的爸爸也从家出发匀速步行了直接到达了文化广场,那么从画社到文化广场的途中两人相遇时离家的距离是多少?(直接写出结果即可)
【答案】(1)①;②0.075;③当时,;当时,;当时,
(2)
【分析】本题考查了从函数图象获取信息,求函数的解析式,列一元一次方程解决实际问题,准确理解题意,熟练掌握知识点是解题的关键.
(1)①根据图象作答即可;
②根据图象,由张华从文化广场返回家的距离除以时间求解即可;
③分段求解,,可得出,当时,;当时,设一次函数解析式为:,把,代入,用待定系数法求解即可.
(2)先求出张华爸爸的速度,设张华爸爸距家,则,当两人相遇时有,列一元一次方程求解即可进一步得出答案.
【详解】(1)解:①画社离家,张华从家出发,先匀速骑行了到画社,
∴张华的骑行速度为,
∴张华离家时,张华离家,
张华离家时,还在画社,故此时张华离家还是,
张华离家时,在文化广场,故此时张华离家还是.
故答案为:.
②,
故答案为:.
③当时,张华的匀速骑行速度为,
∴;
当时,;
当时,设一次函数解析式为:,
把,代入,可得出:
,
解得:,
∴,
综上:当时,,当时,,当时,.
(2)张华爸爸的速度为:,
设张华爸爸距家,则,
当两人从画社到文化广场的途中两人相遇时,有,
解得:,
∴,
故从画社到文化广场的途中两人相遇时离家的距离是.
1.(2020·山东滨州·中考真题)在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是( )
A. B. C. D.
【答案】D
【分析】设点坐标为,根据第二象限点的横纵坐标的符号,求解即可.
【详解】解:设点坐标为,
∵点在第二象限内,
∴,,
∵点P到x轴的距离为4,到y轴的距离为5,
∴,,
∴,,
即点坐标为,
故选:D
【总结】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
2.(2024·甘肃·中考真题)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为,那么有序数对记为对应的田地面积为( )
A.一亩八十步 B.一亩二十步 C.半亩七十八步 D.半亩八十四步
【答案】D
【分析】根据可得,横从上面从右向左看,纵从右边自下而上看,解答即可.
本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.
【详解】根据可得,横从上面从右向左看,纵从右边自下而上看,
故对应的是半亩八十四步,
故选D.
示第b排a号位,
故选:B.
3.(2023·海南·中考真题)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为,将绕着点B顺时针旋转,得到,则点C的坐标是( )
A. B. C. D.
【答案】B
【分析】过点作,由题意可得:,,再利用含30度直角三角形的性质,求解即可.
【详解】解:过点作,如下图:
则
由题意可得:,,
∴,
∴,
∴,,
∴点的坐标为,
故选:B
4.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为y,下列图像能反映y与x之间函数关系的是( )
A.B.C.D.
【答案】A
【分析】本题考查动态问题与函数图象,能够明确y与x分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当与重合时,及当时图象的走势,和当时图象的走势即可得到答案.
【详解】解:当与重合时,设,由题可得:
∴,,
在中,由勾股定理可得:,
∴,
∴,
∴当时,,
∵,
∴图象为开口向上的抛物线的一部分,
当在下方时,设,由题可得:
∴,,
∵,,
∴,
∴,
∴,
∴,
∴当时,,
∵,
∴图象为开口向下的抛物线的一部分,
综上所述:A正确,
故选:A.
5.(2023·四川资阳·中考真题)如图,在平行四边形中,,厘米,厘米,点从点出发以每秒厘米的速度,沿在平行四边形的边上匀速运动至点.设点的运动时间为秒,的面积为平方厘米,下列图中表示与之间函数关系的是( )
A.B.C.D.
【答案】B
【分析】本题考查了动点问题的函数图象问题,涉及平行四边形性质、三角形外角性质、三角形面积公式等知识.由平行四边形性质得到厘米,点速度为每秒厘米,则点在上时,时间满足的取值范围为,观察符合题意的、、的图象,即点在处时,的面积各不相同,求得此时的面积,即可找到正确选项.判断出点运动到点时的时间及此时的面积是解决本题的关键.
【详解】解:四边形是平行四边形,厘米,
厘米,
点从点出发以每秒厘米的速度,
点走完所用的时间为:秒,
当点在上时,;故排除;
当时,点在点处,过点作于点,如图所示:
,
,
,
厘米,
厘米,
厘米,
平方厘米,
故选:B.
6.(2023·山东日照·中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点,其中,且是整数.记,如,即,即,即,以此类推.则下列结论正确的是( )
A. B. C. D.
【答案】B
【分析】利用图形寻找规律,再利用规律解题即可.
【详解】解:第1圈有1个点,即,这时;
第2圈有8个点,即到;
第3圈有16个点,即到,;
依次类推,第n圈,;
由规律可知:是在第23圈上,且,则即,故A选项不正确;
是在第23圈上,且,即,故B选项正确;
第n圈,,所以,故C、D选项不正确;
故选B.
【总结】本题考查图形与规律,利用所给的图形找到规律是解题的关键.
7.(2022·广东·中考真题)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是( )
A.2是变量 B.是变量 C.r是变量 D.C是常量
【答案】C
【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.
【详解】解:2与π为常量,C与r为变量,
故选:C.
【总结】本题考查变量与常量的概念,能够熟练掌握变量与常量的概念为解决本题的关键.
8.(2023·浙江衢州·中考真题)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为,点B的坐标为,则点C的坐标为 .
【答案】作图见解析,
【分析】根据点A、B的坐标可确定原点的位置,再作平面直角坐标系即可,从而可确定点C的坐标.
【详解】解:建立平面直角坐标系如图所示:
∴点C的坐标为,
故答案为:.
【总结】本题考查平面直角坐标系、在坐标系中确定点的坐标,根据点A、B的坐标确定原点的位置是解题的关键.
9.(2023·江苏连云港·中考真题)画一条水平数轴,以原点为圆心,过数轴上的每一刻度点画同心圆,过原点按逆时针方向依次画出与正半轴的角度分别为的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点的坐标分别表示为,则点的坐标可以表示为 .
【答案】
【分析】根据题意,可得在第三个圆上,与正半轴的角度,进而即可求解.
【详解】解:根据图形可得在第三个圆上,与正半轴的角度,
∴点的坐标可以表示为
故答案为:.
【总结】本题考查了有序实数对表示位置,数形结合,理解题意是解题的关键.
10.(2023·湖北黄冈·二模)将一组数,2,,,,…按下列方式进行排列:
,2,,;
,,,4;
……
若2的位置记为,的位置记为 ,则的位置记为 .
【答案】
【分析】先找出被开方数的规律,然后再求得的位置即可.
【详解】解:数字可以化成:
,,,;
,,,;
……
∴规律为:被开方数为从2开始的偶数,每一行4个数,
∵,是第个偶数,而
∴的位置记为
故答案为:
11..若将甲水箱中的水全倒入乙水箱,乙水箱只可再装升的水;若将乙水箱中的水倒入甲水箱,装满甲水箱后,乙水箱还剩升的水.则与之间的数量关系是 .
【答案】
【分析】本题主要考查了列函数关系式,设甲、乙两个水桶中已各装了公升水,根据题意可得,,然后即可求解,熟练掌握知识点的应用是解题的关键.
【详解】解:设甲、乙两个水桶中已各装了公升水,
由甲中的水全倒入乙后,乙只可再装公升的水得:;
由乙中的水倒入甲,装满甲水桶后,乙还剩公升的水得:;
得:,
∴,
故答案为:.
12.(2024·安徽六安·模拟预测)如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上.
(1)作出关于y轴对称的,并直接写出点的坐标;
(2)连接,,求四边形的面积.
【答案】(1)图见解析,
(2)12
【分析】此题考查轴对称的作图、点的坐标、利用网格面积等知识.
(1)找到关于y轴的对称点,顺次连接得到,再写出点的坐标即可;
(2)利用梯形面积公式计算即可.
【详解】(1)解:如图所示,即为所求.则点的坐标为.
(2)解:四边形的面积
13.(2022·江苏常州·模拟预测)如图1,在平面直角坐标系中,点A,B的坐标分别为,,且a,b满足,现将线段先向上平移4个单位长度,再向右平移6个单位长度得到线段,其中点A对应点为C,点B对应点为D,连接,.
(1)请直接写出A,B两点的坐标;
(2)如图2,点M是线段上的一个动点,点N是线段的一个定点,连接,,当点M在线段上移动时(不与A,C重合),探究,,之间的数量关系,并说明理由;
(3)在坐标轴上是否存在点P,使三角形的面积与三角形的面积相等?若存在,请求出点P的坐标;若不存在,试说明理由.
【答案】(1),;
(2),理由见解析
(3)存在点P,使三角形PBC的面积与三角形的面积相等,点P的坐标为或或或.
【分析】()根据非负数的性质求出,,即可求出答案;
()过点作直线,则,再判断出,即可得出结论;
()先求出的面积,再分点在轴和轴上两种情况,根据三角形面积公式建立方程求解,即可得出答案.
【详解】(1)∵,
∴,,
∴,,
∴,;
(2),
理由:如图,过点作直线,
,
线段由线段平移得到,
,
,
,
,
,
,
∴;
(3)如图,依题意可得,,,,
,,,
,
当点在轴上时,设点,
则,
,
,
或;
②当点在轴上时,设点,
则,
,
,
或,
综上所述,存在点,使三角形的面积与三角形的面积相等,点的坐标为或或或.
【总结】此题考查了非负数的性质,平行线的性质,三角形的面积公式,坐标两点的距离公式,坐标平移的特征,用分类讨论的思想解决问题是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)/ 让教学更有效 精品试卷 | 数学
专题8 函数与平面直角坐标系
1.(2024·内蒙古呼和浩特·模拟预测)下列关于两个变量关系的四种表达式中,正确的是( )
①圆的周长C是半径r的函数;
②表达式中,y是x的函数;
③下表中,n是m的函数;
m 1 2 3
n 8 3 2
④图中,曲线表示y是x的函数.
A.①③ B.②④ C.①②③ D.①②③④
2.下列图像不能反映y是x的函数的是( )
A.B.C. D..
3.如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为(细实线)表示铁桶中水面高度,(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则随时间变化的函数图象大致为( )
A.B.C.D.
4.(2024·山东淄博·中考真题)某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从地匀速出发,甲健步走向地.途中偶遇一位朋友,驻足交流后,继续以原速步行前进;乙因故比甲晚出发,跑步到达地后立刻以原速返回,在返回途中与甲第二次相遇.下图表示甲、乙两人之间的距离与甲出发的时间之间的函数关系.( )
那么以下结论:
①甲、乙两人第一次相遇时,乙的锻炼用时为;
②甲出发时,甲、乙两人之间的距离达到最大值;
③甲、乙两人第二次相遇的时间是在甲出发后;
④,两地之间的距离是.
其中正确的结论有:
A.①②③ B.①②④ C.①③④ D.②③④
5.(2024·上海·模拟预测)函数的定义域为 .
6.(2024·黑龙江大兴安岭地·中考真题)甲、乙两货车分别从相距的A、B两地同时出发,甲货车从A地出发途经配货站时,停下来卸货,半小时后继续驶往B地,乙货车沿同一条公路从B地驶往A地,但乙货车到达配货站时接到紧急任务立即原路原速返回B地,结果比甲货车晚半小时到达B地.如图是甲、乙两货车距A地的距离与行驶时间之间的函数图象,结合图象回答下列问题:
(1)甲货车到达配货站之前的速度是 ,乙货车的速度是 ;
(2)求甲货车在配货站卸货后驶往B地的过程中,甲货车距A地的距离与行驶时间之间的函数解析式;
(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.
一.变量与常量
变量:在一个变化过程中,数值发生变化的量称为变量.
常量:在一个变化过程中,数值始终不变的量称为常量.
【补充】变量和常量是相对而言的,判断的前提是“在同一个变化过程中”.当变化过程改变时,同一个量的身份也可能随之改变.
2.函数
定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数.
【注意】对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个,如函数y=|x|,当x=±1时,y的值都是1.
3.函数值
函数值:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值.
4.函数的表示方法
表示法 定义 优点 缺点
列表法 把自变量x的一系列值和函数y的对应值列成一个表,这种表示函数关系的方法叫做列表法 自变量和与它对应的函数值数据一目了然 列出的对应值是有限的,而且在表格中也不容易看出自变量与函数的变化规律
解析法 两个变量之间的函数关系可以用等式来表示,这种表示两个变量之间函数关系的式子称为函数解析式,用函数解析式表示函数的方法叫做解析法 能准确地反映整个变化过程中自变量与函数的对应关系 求对应值时,往往要经过比较复杂的计算,有些函数不能用解析式表示出来
图像法 用图像来表示函数关系的方法叫做图像法 形象的把自变量和函数值的关系表示出来 图像中只能得到近似的数量关系
【注意】并不是所有的函数都可以用这三种方法表示出来.例如气温与时间的函数关系,只能用列表法和图像法表示,而不能用解析式法表示,
二、平面直角坐标系的相关概念
1.有序数对
定义:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).
2.平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直,并且原点重合的数轴,这样就建立了平面直角坐标系.
x轴、y轴:水平的数轴叫做x轴或横轴,通常取向右方向为正方向;
竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向.
原点:两坐标轴交点为平面直角坐标系原点.
坐标平面:坐标系所在的平面叫做坐标平面.
象限:x轴和y轴把坐标平面分成四部分,每个部分称为象限.按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.
【补充】
1)两条坐标轴不属于任何一个象限.
2)平面直角坐标系具有实际意义时,一般在横轴、纵轴的字母附上单位
3.点的坐标
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b),如图.
【易错点】
1)坐标平面内点的坐标是有序实数对,当a≠b时,有序数对(a,b)和(b,a)表示的是不同点的坐标.
2)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,即坐标平面内的点与有序数对是一一对应的.
三、点的坐标的有关性质
1.点的坐标特征
点M(x,y)所处的位置 坐标特征
象限内的点 点M在第一象限 M(正,正)
点M在第二象限 M(负,正)
点M在第三象限 M(负,负)
点M在第四象限 M(正,负)
坐标轴上的点 点M在x轴上 在x轴正半轴上 M(正,0)
在x轴负半轴上 M(负,0)
点M在y轴上 在y轴正半轴上 M(0,正)
在y轴负半轴上 M(0,负)
点M在原点 M(0,0)
象限角平分线上的点 点M在第一、三象限角平分线上 M(x,y)且x=y
点M在第二、四象限角平分线上 M(x,y)且x=-y
两点连线与坐标轴平行 MN∥x轴(或MN⊥y轴) M、N两点纵坐标相等且横坐标不相等
MN∥y轴(或MN⊥x轴) M、N两点横坐标相等且纵坐标不相等
2.点的坐标变化
对于平面直角坐标系上任意一点P(x,y)
变换方式 具体变换过程 变换后的坐标
平移变换 (a>0,b>0) 向左平移a个单位 (x-a,y)
向右平移a个单位 (x+a,y)
向上平移a个单位 (x,y+a)
向下平移a个单位 (x,y-a)
口诀:点的平移左减右加,上加下减.
变换方式 具体变换过程 变换后的坐标
对称变换 关于x轴对称 (x,-y)
关于y轴对称 (-x,y)
关于原点对称 (-x,-y)
口诀:关于谁对称谁不变,关于原点对称都改变.
旋转变换 绕原点顺时针旋转90° (y,-x)
绕原点逆时针旋转90° (-y,x)
绕原点顺/逆时针旋转180° (-x,-y)
3.点到坐标轴的距离
在平面直角坐标系中,已知点P,则
1)点P到轴的距离为;
2)点P到轴的距离为;
3)点P到原点O的距离为P=.
4、坐标系内点与点之间的距离
坐标系中有两点M与点N,则M,N两点之间的距离:
若AB∥x轴,则的距离为;
若AB∥y轴,则的距离为;
【易错易混】
1)原点既是x轴上的点,又是y轴上的点.
2)点的横坐标或纵坐标为0,说明点在y轴上或在x轴上.
3)已知点的坐标可以求出点到x轴、y轴的距离,应注意取相应坐标的绝对值.
4)点到坐标轴的距离与这个点的坐标是有区别的,表现在两方面:
①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;
②距离都是非负数,而坐标可以是负数.
5)因为横轴向右为正,所以点向右平移时横坐标变大,向左平移时横坐标变小,同理向上平移时纵坐标变大,向下平移纵坐标变小.
在平面直角坐标系中,将点向右平移2个单位后,得到的点的坐标是( )
A. B. C. D.
(2020·广东·中考真题)在平面直角坐标系中,点关于轴对称的点的坐标为( )
A. B. C. D.
.
(2022·广东·中考真题)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是( )
A.2是变量 B.是变量 C.r是变量 D.C是常量
(2024·广东佛山·三模)如图,弹簧秤不挂重时弹簧长为,每挂重物体,弹簧伸长,在弹性限度(挂重不超过)内,弹簧的长度与所挂重之间的关系式是( )
A. B. C. D.
5.(2022·河北·二模)如图,甲、乙二人同时从A地出发,甲沿北偏东50°方向行走200m后到达B地,然后立即向正东方向行走200m,二人恰好在C地相遇,若乙中途未改变方向,则乙的行走方向为( )
A.北偏东30° B.北偏东40° C.北偏东70° D.无法确定
6.化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是( )
A.加入絮凝剂的体积越大,净水率越高
B.未加入絮凝剂时,净水率为
C.絮凝剂的体积每增加,净水率的增加量相等
D.加入絮凝剂的体积是时,净水率达到
7.(2024·四川凉山·中考真题)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度随时间变化的大致图象是( )
A. B. C. D.
8.(2024·四川·中考真题)如图,在一个平面区域内,一台雷达探测器测得在点A,B,C处有目标出现.按某种规则,点A,B的位置可以分别表示为,则点C的位置可以表示为 .
9..如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为 .
10.(2023·河北石家庄·模拟预测)如图,在直角坐标系中,已知、、三点,其中a、b,c满足关系式.
(1)求a、b、c的值;
(2)如果在第二象限内有一点,请用含m的式子表示四边形的面积;
(3)在(2)的条件下,是否存在点P,使四边形的面积与的面积相等?若存在,求出点P的坐标,若不存在,请说明理由?
1.(2023·广东深圳·中考真题)如图1,在中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中长与运动时间t(单位:s)的关系如图2,则的长为( )
2.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是( )
A.加入絮凝剂的体积越大,净水率越高
B.未加入絮凝剂时,净水率为
C.絮凝剂的体积每增加,净水率的增加量相等
D.加入絮凝剂的体积是时,净水率达到
3.(2024·江苏徐州·中考真题)小明的速度与时间的函数关系如图所示,下列情境与之较为相符的是( )
A.小明坐在门口,然后跑去看邻居家的小狗,随后坐着逗小狗玩
B.小明攀岩至高处,然后顺着杆子滑下来,随后躺在沙地上休息
C.小明跑去接电话,然后坐下来电话聊天,随后步行至另一个房间
D.小明步行去朋友家,敲门发现朋友不在家,随后步行回家
4.(2024·广东东莞·二模)如图1,在中,点为的中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为( )
A. B. C. D.
5.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A.5 B.7 C. D.
6.(2024·广东茂名·一模)如图,在平面直角坐标系中,边长为2的正六边形的中心与原点O重合,轴,交y轴于点P.将绕点O顺时针旋转,每次旋转,则第2024次旋转结束时,点A的坐标为( )
A. B. C. D.
7.(2024·湖北·中考真题)铁的密度约为,铁的质量与体积成正比例.一个体积为的铁块,它的质量为 .
8.(2024·山东东营·中考真题)在弹性限度内,弹簧的长度是所挂物体质量的一次函数.一根弹簧不挂物体时长12.5cm,当所挂物体的质量为2kg时,弹簧长13.5cm.当所挂物体的质量为5kg时,弹簧的长度为 cm,
9.(2024·黑龙江大兴安岭地·中考真题)在函数中,自变量x的取值范围是 .
10.(2024·天津·中考真题)已知张华的家、画社、文化广场依次在同一条直线上,画社离家,文化广场离家.张华从家出发,先匀速骑行了到画社,在画社停留了,之后匀速骑行了到文化广场,在文化广场停留后,再匀速步行了返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.
请根据相关信息,回答下列问题:
(1)①填表:
张华离开家的时间 1 4 13 30
张华离家的距离
②填空:张华从文化广场返回家的速度为______;
③当时,请直接写出张华离家的距离关于时间的函数解析式;
(2)当张华离开家时,他的爸爸也从家出发匀速步行了直接到达了文化广场,那么从画社到文化广场的途中两人相遇时离家的距离是多少?(直接写出结果即可)
1.(2020·山东滨州·中考真题)在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是( )
A. B. C. D.
2.(2024·甘肃·中考真题)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为,那么有序数对记为对应的田地面积为( )
A.一亩八十步 B.一亩二十步 C.半亩七十八步 D.半亩八十四步
3.(2023·海南·中考真题)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为,将绕着点B顺时针旋转,得到,则点C的坐标是( )
A. B. C. D.
4.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为y,下列图像能反映y与x之间函数关系的是( )
A.B.C.D..
5.(2023·四川资阳·中考真题)如图,在平行四边形中,,厘米,厘米,点从点出发以每秒厘米的速度,沿在平行四边形的边上匀速运动至点.设点的运动时间为秒,的面积为平方厘米,下列图中表示与之间函数关系的是( )
A.B.C.D.
6.(2023·山东日照·中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点,其中,且是整数.记,如,即,即,即,以此类推.则下列结论正确的是( )
A. B. C. D.
7.(2022·广东·中考真题)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是( )
A.2是变量 B.是变量 C.r是变量 D.C是常量
8.(2023·浙江衢州·中考真题)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为,点B的坐标为,则点C的坐标为 .
9.(2023·江苏连云港·中考真题)画一条水平数轴,以原点为圆心,过数轴上的每一刻度点画同心圆,过原点按逆时针方向依次画出与正半轴的角度分别为的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点的坐标分别表示为,则点的坐标可以表示为 .
10.(2023·湖北黄冈·二模)将一组数,2,,,,…按下列方式进行排列:
,2,,;
,,,4;
……
若2的位置记为,的位置记为 ,则的位置记为 .
11..若将甲水箱中的水全倒入乙水箱,乙水箱只可再装升的水;若将乙水箱中的水倒入甲水箱,装满甲水箱后,乙水箱还剩升的水.则与之间的数量关系是 .
12.(2024·安徽六安·模拟预测)如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上.
(1)作出关于y轴对称的,并直接写出点的坐标;
(2)连接,,求四边形的面积.
13.(2022·江苏常州·模拟预测)如图1,在平面直角坐标系中,点A,B的坐标分别为,,且a,b满足,现将线段先向上平移4个单位长度,再向右平移6个单位长度得到线段,其中点A对应点为C,点B对应点为D,连接,.
(1)请直接写出A,B两点的坐标;
(2)如图2,点M是线段上的一个动点,点N是线段的一个定点,连接,,当点M在线段上移动时(不与A,C重合),探究,,之间的数量关系,并说明理由;
(3)在坐标轴上是否存在点P,使三角形的面积与三角形的面积相等?若存在,请求出点P的坐标;若不存在,试说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)