1.1.1 同底数幂的乘法 导学案(含答案) 2024-2025学年数学湘教版七年级下册

文档属性

名称 1.1.1 同底数幂的乘法 导学案(含答案) 2024-2025学年数学湘教版七年级下册
格式 docx
文件大小 96.5KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2025-02-16 17:16:24

图片预览

文档简介

1.1.1 同底数幂的乘法
【素养目标】
1.能够根据乘方的意义,探索并总结同底数幂的乘法法则.
2.能够运用同底数幂的乘法法则进行运算.
3.通过利用法则进行运算,进一步提升运算能力.
【重点】
同底数幂乘法法则及其应用.
【自主预习】
1.什么叫作乘方 什么叫作幂
2.数学小组分组讨论中,小明同学认为m2·m2=2m2,你觉得他的说法正确吗 如果不正确请给出正确的解答.
3.an表示 个 相乘,其中a叫作 ,n叫作 .
【参考答案】1.求几个相同因数的乘积的运算,叫作乘方,乘方的结果叫作幂.
2.小明同学的说法是错误的,正确答案应该是m4.
3.n a 底数 指数
1.计算x3·x4的结果是 .
2.若32×3k=38,则k的值为 .
3.若ax=4,ay=5,则ax+y= .
【参考答案】1.x7 2.6 3.20
【合作探究】
同底数幂的乘法
阅读课本本课时第一个“做一做”和“说一说”的内容,解决下列问题.
1.算一算:仔细观察下面的计算过程,并仿照这个过程完成下面的计算,解决相关的问题.
例:22×24=()×()==26.
(1) 33×32= × = = .
(2) a2·a4= · = = .
(3) a2·am= · = = .
2.综合上面四个式子,这类运算的两个因数有什么特点 运算后的底数和指数是怎样变化的
3.猜一猜:am·an(其中m,n都是正整数)的计算结果是什么
4.用计算的方法说明你的猜想是正确的.
【参考答案】1.(1)(3×3×3) (3×3) 3×3×3×3×3 35
(2)(a·a) (a·a·a·a) a·a·a·a·a·a a6
(3)(a·a) ()  a2+m
2.两个因数是同底数的幂.运算后的底数没有发生变化,指数相加.
3.am·an=am+n(其中m,n都是正整数).
4.am·an=()·()==am+n
1.计算x2·(-x)3的结果是 ( )
A.x6 B.-x6
C.x5 D.-x5
2.若2×22×2n=29,则n等于 .
【参考答案】1.D 2.6
三个或三个以上同底数幂的乘法
例 计算下列各式,结果用幂的形式表示.
(1)-23×24×25.(2)x3·x·x5.
【方法归纳交流】当三个或三个以上的同底数幂相乘时,同样适用同底数幂的乘法法则,可表示为am·an·ap= (m,n,p为正整数).
【参考答案】解:(1)-23×24×25=-23+4+5=-212.
(2)x3·x·x5=x3+1+5=x9.
【方法归纳交流】 am+n+p
变式训练 
1.x·x2·   =x6,横线上填 ( )
A.x4 B.x3 C.x2 D.x
2.已知算式:
①(-a)3·(-a)·(-a)2=a6;
②(-a)4·(-a)·(-a)2=-a7;
③(-a)3·(-a)·(-a)2=-a6;
④(-a)4·(-a)·(-a)2=a7;
其中正确的算式是 ( )
A.①和② B.②和③
C.①和④ D.③和④
【参考答案】1.B 2.A
同底数幂乘法法则的灵活运用
例1 下面的运算能够应用同底数幂乘法法则进行计算的是 (填序号).
①a3+a2;②a4-a2;③a5·a5;④2a-3a;⑤xy·yx.
【参考答案】③
变式训练 
1.下列各题能用同底数幂乘法法则进行计算的是 ( )
A.(x-y)2(x+y)3
B.(-x-y)(x+y)2
C.(x+y)2+(x+y)2
D.-(x-y)2(-x-y)3
2.计算下列各式,结果用幂的形式表示.
(1)68×63;(2)-26×27;(3)x5·x;
(4)ym+1·ym-1;(5)(a+b)2(a+b)3.
【参考答案】1.B
2.解:(1)68×63=68+3=611.
(2)-26×27=-26+7=-213.
(3)x5·x=x5+1=x6.
(4)ym+1·ym-1=y(m+1)+(m-1)=y2m.
(5)(a+b)2(a+b)3=(a+b)2+3=(a+b)5.
例2 若am=2,an=4,则am+n等于 ( )
A.5 B.6 C.8 D.9
【参考答案】C
变式训练 如果等式x3·xm=x6成立,那么m= .
【参考答案】3
同课章节目录