教师姓名 学生姓名 年 级 上课时间
学 科 课题名称 因式分解 周 次
教学目标 1、经历逆向得出因式分解方法的过程,并会用提公因式法分解因式2、学习运用公式法分解因式,并了解整式乘法和因式分解的区别
教学重难点 掌握公因式的概念,会使用提公因式法和运用公式法进行因式分解
知识回顾1 多项式乘多项式先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加, 如:2 完全平方公式 如:3 平方差公式 如:用简便方法计算(1) (2) 解(1)1(2)5.16知识点精要1、a(b+c+d)=ab+ac+ad反过来写就得到ab+ac+ad= a(b+c+d)多项式ab+ac+ad各项都含有因式“a”,像这样的因式称为多项式各项的公因式例1: 找出下列多项式各项的公因式(1) 2 (2) (3) 解:(1)2ab(2)(3)3ab注:系数取最大公约数;字母取各项相同的字母,且各字母的指数取次数最低的2、=像这样,把一个多项式化为几个最简整式的乘积的形式,叫做多项式的因式分解例2: 因式分解(1) (2) (3)解:(1)(2)(3)注:多项式的第一项系数为负数时,通常把“—”号作为公因式的符号进行因式分解3、一般地,如果多项式的各项有公因式 ( http: / / www.21cnjy.com" \o "欢迎登陆21世纪教育网" \t "_blank ),可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法4、 运用平方差公式、完全平方公式,把一个多项式分解因式的方法叫做运用公式法反过来写,就得到 反过来写,就得到例3: (1) (2) 例4: 因式分解(1) (2) (3) 解:(1)(6+5x)(6-5x)(2)(4a+3b)(4a-3b)(3)(5a+b)(a+5b)例5: (1) (2) (3) (4) 例6:因式分解(1) (2)解:(1)(2)(3) (4)解:(3)(4)5、整式乘法和因式分解是既有联系又有区别的两种变形这两种变形具有互逆的关系热身练习1、多项式各项的公因式是________2、 把下列各式分解因式(提公因式法) (1) (2) (3)3、已知2x+y=4,xy=3,则代数式 的值为 4、求代数式IR1+IR2+IR3的值,其中R1=25,R2=40,R3=35,I=2.55、多项式 可分解为 ,则a= , b= 6、如果是一个完全平方式,那么k的值是 7、因式分解(1) (2) (3)(4) (5) (6)解:(4)(5)(6)