中小学教育资源及组卷应用平台
第四章 三角形(测试)
(考试时间:100分钟 试卷满分:120分)
一.选择题(共10小题,满分30分,每小题3分)
1.下面几何体中,是圆锥的为( )
A. B. C. D.
2.下列图形是正方体展开图的个数为( )
A.1个 B.2个 C.3个 D.4个
3.如图,,,则的大小为( )
A. B. C. D.
4.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则( )
A. B. C. D.
数学与实际生活——利用数学知识解决实际问题
5.如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面与平行,入射光线l与出射光线m平行.若入射光线l与镜面的夹角,则的度数为( )
A. B. C. D.
数学与实际生活——利用数学知识解决实际问题
6.如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb角的大面小,需将转化为与它相等的角,则图中与相等的角是( )
A. B. C. D.
7.若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )
A.8cm B.13cm C.8cm或13cm D.11cm或13cm
三角形折叠模型
8.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A. B. C. D.
一线三垂直模型
9.如图,点,将线段平移得到线段,若,则点D的坐标是( )
A. B. C. D.
10.如图①,在矩形中,H为边上的一点,点M从点A出发沿折线运动到点B停止,点N从点A出发沿运动到点B停止,它们的运动速度都是,若点M、N同时开始运动,设运动时间为,的面积为,已知S与t之间函数图象如图②所示,则下列结论正确的是( )
①当时,是等边三角形.
②在运动过程中,使得为等腰三角形的点M一共有3个.
③当时,.
④当时,.
⑤当时,.
A.①③④ B.①③⑤ C.①②④ D.③④⑤
二.填空题(共6小题,满分18分,每小题3分)
11.如图,已知,点B,E,C,F依次在同一条直线上.若,则的长为___________.
12.一个三角形的两边长分别是3和5,则第三边长可以是__________.(只填一个即可)
13.若直三棱柱的上下底面为正三角形,侧面展开图是边长为的正方形,则该直三棱柱的表面积为__________.
14.如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为__________.
数学与规律探究——图形类规律
15.在平面直角坐标系中,点在轴的正半轴上,点在直线上,若点的坐标为,且均为等边三角形.则点的纵坐标为___________.
16.如图,在中,,点分别在边,上,连接,已知点和点关于直线对称.设,若,则_________(结果用含的代数式表示).
三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)
17.如图,,直线与分别交于点E,F,上有一点G且,.求的度数.
射影定理(相似)
18.在中,是斜边上的高.
(1)证明:;
(2)若,求的长.
19.△ABC在边长为l的正方形网格中如图所示.
①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.
②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
③在②的条件下求出点B经过的路径长.
20.如图,在梯形中,点F,E分别在线段,上,且,
(1)求证:
(2)若,求证:
21.综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:
(1)直接写出纸板上与纸盒上的大小关系;
(2)证明(1)中你发现的结论.
22.如图,一次函数(为常数,)的图象与反比例函数为常数,的图象在第一象限交于点,与轴交于点.
(1)求一次函数和反比例函数的解析式.
(2)点在轴上,是以为腰的等腰三角形,请直接写出点的坐标.
23.如图,是边长为4的等边三角形,点D,E,F分别在边,,上运动,满足.
(1)求证:;
(2)设的长为x,的面积为y,求y关于x的函数解析式;
(3)结合(2)所得的函数,描述的面积随的增大如何变化.
手拉手模型
24.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
(1)判断线段BD与CE的数量关系并给出证明;
(2)延长ED交直线BC于点F.
①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
25.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
第四章 三角形(测试)
(考试时间:100分钟 试卷满分:120分)
一.选择题(共10小题,满分30分,每小题3分)
1.下面几何体中,是圆锥的为( )
A. B. C. D.
【答案】B
【分析】观察所给几何体,可以直接得出答案.
【详解】解:A选项为圆柱,不合题意;
B选项为圆锥,符合题意;
C选项为三棱锥,不合题意;
D选项为球,不合题意;
故选B.
【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥.
2.下列图形是正方体展开图的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.
【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.
故选:C.
【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.
3.如图,,,则的大小为( )
A. B. C. D.
【答案】C
【分析】由,,可求出的度数,再根据角与角之间的关系求解.
【详解】∵,,
∴,
∵,
∴.
故选:C.
【点睛】本题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和相比,多加了.
4.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则( )
A. B. C. D.
【答案】C
【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.
【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.
【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.
数学与实际生活——利用数学知识解决实际问题
5.如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面与平行,入射光线l与出射光线m平行.若入射光线l与镜面的夹角,则的度数为( )
A. B. C. D.
【答案】C
【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由//可得∠6=∠5
【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,
∵
∴
∴
∵//
∴
故选:C
【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.
数学与实际生活——利用数学知识解决实际问题
6.如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb角的大面小,需将转化为与它相等的角,则图中与相等的角是( )
A. B. C. D.
【答案】B
【分析】根据直角三角形的性质可知:与互余,与互余,根据同角的余角相等可得结论.
【详解】由示意图可知:和都是直角三角形,
,,
,
故选:B.
【点睛】本题考查直角三角形的性质的应用,掌握直角三角形的两个锐角互余是解题的关键.
7.若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )
A.8cm B.13cm C.8cm或13cm D.11cm或13cm
【答案】D
【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】解:当3是腰时,
∵3+3>5,
∴3,3,5能组成三角形,
此时等腰三角形的周长为3+3+5=11(cm),
当5是腰时,
∵3+5>5,
5,5,3能够组成三角形,
此时等腰三角形的周长为5+5+3=13(cm),
则三角形的周长为11cm或13cm.
故选:D
【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
三角形折叠模型
8.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A. B. C. D.
【答案】A
【分析】根据题意可得AD = AB = 2, ∠B = ∠ADB, CE= DE, ∠C=∠CDE,可得∠ADE = 90°,继而设AE=x,则CE=DE=3-x,根据勾股定理即可求解.
【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,
∴AD = AB = 2, ∠B = ∠ADB,
∵折叠纸片,使点C与点D重合,
∴CE= DE, ∠C=∠CDE,
∵∠BAC = 90°,
∴∠B+ ∠C= 90°,
∴∠ADB + ∠CDE = 90°,
∴∠ADE = 90°,
∴AD2 + DE2 = AE2,
设AE=x,则CE=DE=3-x,
∴22+(3-x)2 =x2,
解得
即AE=
故选A
【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.
一线三垂直模型
9.如图,点,将线段平移得到线段,若,则点D的坐标是( )
A. B. C. D.
【答案】D
【分析】先过点C做出轴垂线段CE,根据相似三角形找出点C的坐标,再根据平移的性质计算出对应D点的坐标.
【详解】
如图过点C作轴垂线,垂足为点E,
∵
∴
∵
∴
在和中,
,
∴,
∴ ,
则 ,
∵点C是由点B向右平移6个单位,向上平移2个单位得到,
∴点D同样是由点A向右平移6个单位,向上平移2个单位得到,
∵点A坐标为(0,3),
∴点D坐标为(6,5),选项D符合题意,
故答案选D
【点睛】本题考查了图象的平移、相似三角形的判定与性质,利用相似三角形的判定与性质找出图象左右、上下平移的距离是解题的关键.
10.如图①,在矩形中,H为边上的一点,点M从点A出发沿折线运动到点B停止,点N从点A出发沿运动到点B停止,它们的运动速度都是,若点M、N同时开始运动,设运动时间为,的面积为,已知S与t之间函数图象如图②所示,则下列结论正确的是( )
①当时,是等边三角形.
②在运动过程中,使得为等腰三角形的点M一共有3个.
③当时,.
④当时,.
⑤当时,.
A.①③④ B.①③⑤ C.①②④ D.③④⑤
【答案】A
【分析】由图②可知:当0<t≤6时,点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动;由点M、N两点的运动速度为1cm/s,所以可得AH=AB=6cm,利用四边形ABCD是矩形可知CD=AB=6cm;当6≤t≤9时,S=且保持不变,说明点N在B处不动,点M在线段HC上运动,运动时间为(9-6)秒,可得HC=3cm,即点H为CD的中点;利用以上的信息对每个结论进行分析判断后得出结论.
【详解】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,
①∵点M、N两点的运动速度为1cm/s,
∴AH=AB=6cm,
∵四边形ABCD是矩形,
∴CD=AB=6cm.
∵当t=6s时,S=cm2,
∴×AB×BC=.
∴BC=.
∵当6≤t≤9时,S=且保持不变,
∴点N在B处不动,点M在线段HC上运动,运动时间为(9-6)秒,
∴HC=3cm,即点H为CD的中点.
∴BH=.
∴AB=AH=BH=6,
∴△ABM为等边三角形.
∴∠HAB=60°.
∵点M、N同时开始运动,速度均为1cm/s,
∴AM=AN,
∴当0<t≤6时,△AMN为等边三角形.
故①正确;
②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:
此时有两个符合条件的点;
当AD=AM时,△ADM为等腰三角形,如图:
当DA=DM时,△ADM为等腰三角形,如图:
综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.
∴②不正确;
③过点M作ME⊥AB于点E,如图,
由题意:AM=AN=t,
由①知:∠HAB=60°.
在Rt△AME中,
∵sin∠MAE=,
∴ME=AM sin60°=t,
∴S=AN×ME=.
∴③正确;
④当t=9+时,CM=,如图,
由①知:BC=,
∴MB=BC-CM=.
∵AB=6,
∴tan∠MAB=,
∴∠MAB=30°.
∵∠HAB=60°,
∴∠DAH=90°-60°=30°.
∴∠DAH=∠BAM.
∵∠D=∠B=90°,
∴△ADH∽△ABM.
∴④正确;
⑤当9<t<9+时,此时点M在边BC上,如图,
此时MB=9+-t,
∴S=.
∴⑤不正确;
综上,结论正确的有:①③④.
故选:A.
【点睛】本题主要考查了动点问题的函数图象,主要涉及函数图象上点的坐标的实际意义,三角形的面积,等腰三角形的判定,等边三角形的判定,相似三角形的判定,特殊角的三角函数值.对于动点问题,依据已知条件画出符合题意的图形并求得相应线段的长度是解题的关键.
二.填空题(共6小题,满分18分,每小题3分)
11.如图,已知,点B,E,C,F依次在同一条直线上.若,则的长为___________.
【答案】3
【分析】利用全等三角形的性质求解即可.
【详解】解:由全等三角形的性质得:,
∴,
故答案为:3.
【点睛】本题考查全等三角形性质,熟练掌握全等三角形的性质是解答的关键.
12.一个三角形的两边长分别是3和5,则第三边长可以是__________.(只填一个即可)
【答案】4(答案不唯一,大于2且小于8之间的数均可)
【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得,再解即可.
【详解】解:设第三边长为x,由题意得:
,
则,
故答案可为:4(答案不唯一,大于2且小于8之间的数均可).
【点睛】此题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和.
13.若直三棱柱的上下底面为正三角形,侧面展开图是边长为的正方形,则该直三棱柱的表面积为__________.
【答案】/
【分析】根据题意得出正三角形的边长为,进而根据表面积等于两个底面积加上侧面正方形的面积即可求解.
【详解】解:∵侧面展开图是边长为的正方形,
∴底面周长为,
∵底面为正三角形,
∴正三角形的边长为
作,
是等边三角形,,
,
在直角中,
,
;
∴该直三棱柱的表面积为,
故答案为:.
【点睛】本题考查了三棱柱的侧面展开图的面积,等边三角形的性质,正方形的性质,熟练掌握以上知识是解题的关键.
14.如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为__________.
【答案】
【分析】根据折叠的性质以及含30度角的直角三角形的性质得出,即可求解.
【详解】解:∵将沿折叠,点的对应点为点.点刚好落在边上,在中,,,
∴,
∴,
故答案为:.
【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.
数学与规律探究——图形类规律
15.在平面直角坐标系中,点在轴的正半轴上,点在直线上,若点的坐标为,且均为等边三角形.则点的纵坐标为___________.
【答案】
【分析】过点作轴,交直线于点,过点作轴于点,先求出,再根据等边三角形的性质、等腰三角形的判定可得,然后解直角三角形可得的长,即可得点的纵坐标,同样的方法分别求出点的纵坐标,最后归纳类推出一般规律,由此即可得.
【详解】解:如图,过点作轴,交直线于点,过点作轴于点,
,
,
当时,,即,
,
,
是等边三角形,
,
,
,
,即点的纵坐标为,
同理可得:点的纵坐标为,
点的纵坐标为,
点的纵坐标为,
归纳类推得:点的纵坐标为(为正整数),
则点的纵坐标为,
故答案为:.
【点睛】本题考查了点坐标的规律探索、等边三角形的性质、正比例函数的应用、解直角三角形等知识点,正确归纳类推出一般规律是解题关键.
16.如图,在中,,点分别在边,上,连接,已知点和点关于直线对称.设,若,则_________(结果用含的代数式表示).
【答案】
【分析】先根据轴对称的性质和已知条件证明,再证,推出,通过证明 ,推出,即可求出的值.
【详解】解:点和点关于直线对称,
,
,
.
,
,
点和点关于直线对称,
,
又 ,
,
,
,,
点和点关于直线对称,
,
,
,
,
在和中,
,
.
在中,,
,,
,
,
,
,
,,
.
,
,
解得,
.
故答案为:.
【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明 .
三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)
17.如图,,直线与分别交于点E,F,上有一点G且,.求的度数.
【答案】
【分析】根据,可得,从而得到,再由,可得,然后根据三角形内角和定理,即可求解.
【详解】解:∵,
∴,
∴,
∵,
∴,
∴.
【点睛】本题主要考查了平行线的性质,等腰三角形的性质,三角形内角和定理,熟练掌握平行线的性质,等腰三角形的性质,三角形内角和定理是解题的关键.
射影定理(相似)
18.在中,是斜边上的高.
(1)证明:;
(2)若,求的长.
【答案】(1)见解析
(2)
【分析】(1)根据三角形高的定义得出,根据等角的余角相等,得出,结合公共角,即可得证;
(2)根据(1)的结论,利用相似三角形的性质即可求解.
【详解】(1)证明:∵是斜边上的高.
∴,
∴,
∴
又∵
∴,
(2)∵
∴,
又
∴.
【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
19.△ABC在边长为l的正方形网格中如图所示.
①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.
②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
③在②的条件下求出点B经过的路径长.
【答案】①作图见解析,点A1的坐标为(3,﹣3);②作图见解析;③
【分析】①延长AC到A1使A1C=2AC,延长BC到B1使B1C=2BC,则△A1B1C满足条件;
②利用网格特点和旋转的性质画出A、B的对应点A2、B2,从而得到△A2B2C.
③先计算出OB的长,然后根据弧长公式计算点B经过的路径长.
【详解】解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);
②如图,△A2B2C为所作;
③,
点B经过的路径长.
【点睛】本题考查了作图﹣位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.
20.如图,在梯形中,点F,E分别在线段,上,且,
(1)求证:
(2)若,求证:
【答案】(1)证明见解析
(2)证明见解析
【分析】(1)先根据平行线的性质可得,再根据三角形的全等的判定可得,然后根据全等的三角形的性质即可得证;
(2)先根据全等三角形的性质可得,从而可得,再根据相似三角形的判定可得,然后根据相似三角形的性质即可得证.
【详解】(1)证明:,
,
在和中,,
,
.
(2)证明:,
,
,即,
在和中,,
,
,
由(1)已证:,
,
.
【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.
21.综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:
(1)直接写出纸板上与纸盒上的大小关系;
(2)证明(1)中你发现的结论.
【答案】(1)
(2)证明见解析.
【分析】(1)和均是等腰直角三角形,;
(2)证明是等腰直角三角形即可.
【详解】(1)解:
(2)证明:连接,
设小正方形边长为1,则,,
,
为等腰直角三角形,
∵,
∴为等腰直角三角形,
,
故
【点睛】此题考查了勾股定理及其逆定理的应用和等腰三角形的性质,熟练掌握其性质是解答此题的关键.
22.如图,一次函数(为常数,)的图象与反比例函数为常数,的图象在第一象限交于点,与轴交于点.
(1)求一次函数和反比例函数的解析式.
(2)点在轴上,是以为腰的等腰三角形,请直接写出点的坐标.
【答案】(1)一次函数的解析式为,反比例函数的解析式为
(2)或或
【分析】(1)根据待定系数法,把已知点代入再解方程即可得出答案;
(2)首先利用勾股定理求出得的长,再分两种情形讨论即可.
【详解】(1)解:把点代入一次函数得,
解得:,
故一次函数的解析式为,
把点代入,得,
,
把点代入,得,
故反比例函数的解析式为;
(2)解:,,,
当时,或,
当时,点关于直线对称,
,
综上所述:点的坐标为或或.
【点睛】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,等腰三角形的性质等知识,运用分类思想是解题的关键.
23.如图,是边长为4的等边三角形,点D,E,F分别在边,,上运动,满足.
(1)求证:;
(2)设的长为x,的面积为y,求y关于x的函数解析式;
(3)结合(2)所得的函数,描述的面积随的增大如何变化.
【答案】(1)见详解
(2)
(3)当时,的面积随的增大而增大,当时,的面积随的增大而减小
【分析】(1)由题意易得,,然后根据“”可进行求证;
(2)分别过点C、F作,,垂足分别为点H、G,根据题意可得,,然后可得,由(1)易得,则有,进而问题可求解;
(3)由(2)和二次函数的性质可进行求解.
【详解】(1)证明:∵是边长为4的等边三角形,
∴,,
∵,
∴,
在和中,
,
∴;
(2)解:分别过点C、F作,,垂足分别为点H、G,如图所示:
在等边中,,,
∴,
∴,
设的长为x,则,,
∴,
∴,
同理(1)可知,
∴,
∵的面积为y,
∴;
(3)解:由(2)可知:,
∴,对称轴为直线,
∴当时,y随x的增大而增大,当时,y随x的增大而减小;
即当时,的面积随的增大而增大,当时,的面积随的增大而减小.
【点睛】本题主要考查锐角三角函数、二次函数的综合及等边三角形的性质,熟练掌握锐角三角函数、二次函数的综合及等边三角形的性质是解题的关键.
手拉手模型
24.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
(1)判断线段BD与CE的数量关系并给出证明;
(2)延长ED交直线BC于点F.
①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
【答案】(1),理由见解析
(2)①;②,理由见解析
【分析】(1)利用等边三角形的性质和旋转的性质易得到,再由全等三角形的性质求解;
(2)①根据线段绕点A按逆时针方向旋转得到得到是等边三角形,
由等边三角形的性质和(1)的结论来求解;②过点A作于点G,连接AF,根据等边三角形的性质和锐角三角函数求值得到,,进而得到,进而求出,结合,ED=EC得到,再用等腰直角三角形的性质求解.
【详解】(1)解:.
证明:∵是等边三角形,
∴,.
∵线段绕点A按逆时针方向旋转得到,
∴,,
∴,
∴,
即.
在和中
,
∴,
∴;
(2)解:①
理由:∵线段绕点A按逆时针方向旋转得到,
∴是等边三角形,
∴,
由(1)得,
∴;
②过点A作于点G,连接AF,如下图.
∵是等边三角形,,
∴,
∴.
∵是等边三角形,点F为线段BC中点,
∴,,,
∴,
∴,,
∴,
即,
∴,
∴.
∵,,
∴,
即是等腰直角三角形,
∴.
【点睛】本题主要考查了等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,相似三角形的判定和性质,等腰直角三角形的判定和性质,理解相关知识是解答关键.
25.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
【答案】(1);(2),;(3)或或或
【分析】(1)将、、代入即可求解析式;
(2)过点作轴交直线于点,过作轴交直线于点,由,可得,则求的最大值即可;
(3)分三种情况讨论:当时,过点作轴,过点作轴,与交于点,过点作轴,与交于点,可证明,求出;当时,过点作轴交于点,可证明,求出;当时,线段的中点,设,由,可求或.
【详解】解:(1)将点、、代入,
得,
解得,
;
(2)如图1,过点作轴交直线于点,过作轴交直线于点,
,
,
设直线的解析式为,
,
,
,
设,则,
,
,
,
,
,
当时,有最大值,
;
(3),点在上,
如图2,当时,
过点作轴,过点作轴,与交于点,过点作轴,与交于点,
,,
,
,
,即,
,
;
如图3,当时,
过点作轴交于点,
,,
,
,
,即,
,
;
如图4,当时,
线段的中点,,
设,
,
,
或,
或;
综上所述:是直角三角形时,点坐标为或或或.
【点睛】本题考查二次函数的综合,熟练掌握二次函数的图象及性质,通过构造平行线将的最大值问题转化为求的最大值问题是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)