中小学教育资源及组卷应用平台
第八章 统计与概率(测试)
(考试时间:100分钟 试卷满分:120分)
一.选择题(共10小题,满分30分,每小题3分)
1.下列说法正确的是( )
A.将油滴入水中,油会浮在水面上是不可能事件
B.抛出的篮球会下落是随机事件
C.了解一批圆珠笔芯的使用寿命,采用普查的方式
D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定
2.4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是( )
A.1500名师生的国家安全知识掌握情况
B.150
C.从中抽取的150名师生的国家安全知识掌握情况
D.从中抽取的150名师生
3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是( )
A.条形统计图 B.折线统计图 C.扇形统计图 D.频数分布直方图
4.长沙市某一周内每日最高气温的情况如图所示,下列说法中错误的是( )
A.这周最高气温是32℃ B.这组数据的中位数是30
C.这组数据的众数是24 D.周四与周五的最高气温相差8℃
5.若一组数据的方差为2,则数据的方差是( )
A.2 B.5 C.6 D.11
6.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为和,则与的大小关系是( )
测试次数 1 2 3 4 5
甲 5 10 9 3 8
乙 8 6 8 6 7
A. B. C. D.无法确定
7.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )
A.摸出“北斗”小球的可能性最大 B.摸出“天眼”小球的可能性最大
C.摸出“高铁”小球的可能性最大 D.摸出三种小球的可能性相同
8.剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )
A. B. C. D.
9.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:,,,,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是( )
A. B. C. D.
10.在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为P.下列说法正确的是( )
A.试验次数越多,f越大
B.f与P都可能发生变化
C.试验次数越多,f越接近于P
D.当试验次数很大时,f在P附近摆动,并趋于稳定
二.填空题(共6小题,满分18分,每小题3分)
11.某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:
使用寿命
灯泡只数 5 10 12 17 6
根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为______只.
12.一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则_________.
13.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:
应聘者 项目 综合知识 工作经验 语言表达
甲
乙
丙
如果将每位应聘者的综合知识、工作经验、语言表达的成绩按的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是___________.
14.小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是________.
15.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有 _____只A种候鸟.
16.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:),结果统计如下:
品种 第一株 第二株 第三株 第四株 第五株 平均数
甲 32 30 25 18 20 25
乙 28 25 26 24 22 25
则两个大豆品种中光合作用速率更稳定的是_________(填“甲”或“乙”).
三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)
17.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.
(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为__________;
(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.
18.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.
19.甲、乙两位同学相约打乒乓球.
(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;
(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?
20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.
根据图中信息,解答下列问题:
(1)这5期的集训共有多少天?
(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?
(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.
21.如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“”是指该枚古钱币的直径为,厚度为,质量为.已知这些古钱币的材质相同.
根据图中信息,解决下列问题.
(1)这5枚古钱币,所标直径的平均数是______,所标厚度的众数是______,所标质量的中位数是________ g;
(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:
名称 文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元
总质量/g 58.7 58.1 55.2 54.3 55.8
请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.
22.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.
游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.
(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;
(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?
23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.
a.甲、乙两位同学得分的折线图:
b.丙同学得分:
10,10,10,9,9,8,3,9,8,10
c.甲、乙、丙三位同学得分的平均数:
同学 甲 乙 丙
平均数 8.6 8.6 m
根据以上信息,回答下列问题:
(1)求表中m的值;
(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);
(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).
24.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.
小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图
选手 测试成绩/分 总评成绩/分
采访 写作 摄影
小悦 83 72 80 78
小涵 86 84 ▲ ▲
(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;
(2)请你计算小涵的总评成绩;
(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.
25.在“双减”背景下,某区教育部门想了解该区A,B两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:
【收集数据】A学校50名九年级学生中,课后书面作业时长在70.5≤x<80.5组的具体数据如下:
74,72,72,73,74,75,75,75,75,
75,75,76,76,76,77,77,78,80
【整理数据】不完整的两所学校的频数分布表如下,不完整的A学校频数分布直方图如图所示:
组别 50.5≤x<60.5 60.5≤x<70.5 70.5≤x<80.5 80.5≤x<90.5 90.5≤x<100.5
A学校 5 15 x 8 4
B学校 7 10 12 17 4
【分析数据】两组数据的平均数、众数、中位数、方差如下表:
特征数 平均数 众数 中位数 方差
A学校 74 75 y 127.36
B学校 74 85 73 144.12
根据以上信息,回答下列问题:
(1)本次调查是____________调查(选填“抽样”或“全面”);
(2)统计表中,x=_____,y=_____;
(3)补全频数分布直方图;
(4)在这次调查中,课后书面作业时长波动较小的是_____学校(选填“A”或“B”);
(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有_____人.
第八章 统计与概率(测试)
(考试时间:100分钟 试卷满分:120分)
一.选择题(共10小题,满分30分,每小题3分)
1.下列说法正确的是( )
A.将油滴入水中,油会浮在水面上是不可能事件
B.抛出的篮球会下落是随机事件
C.了解一批圆珠笔芯的使用寿命,采用普查的方式
D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定
【答案】D
【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.
【详解】解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;
B、抛出的篮球会下落是必然事件,故B不符合题意;
C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;
D、若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;
故选:.
【点睛】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.
2.4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是( )
A.1500名师生的国家安全知识掌握情况
B.150
C.从中抽取的150名师生的国家安全知识掌握情况
D.从中抽取的150名师生
【答案】C
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.
【详解】解:样本是从中抽取的150名师生的国家安全知识掌握情况.
故选:C.
【点睛】本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.
3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是( )
A.条形统计图 B.折线统计图 C.扇形统计图 D.频数分布直方图
【答案】C
【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.
【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.
故选C.
【点睛】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.
4.长沙市某一周内每日最高气温的情况如图所示,下列说法中错误的是( )
A.这周最高气温是32℃
B.这组数据的中位数是30
C.这组数据的众数是24
D.周四与周五的最高气温相差8℃
【答案】B
【分析】根据折线统计图,可得答案.
【详解】解:A、由纵坐标看出,这一天中最高气温是32℃,说法正确,故A不符合题意;
B、这组数据的中位数是27,原说法错误,故B符合题意;
C、这组数据的众数是24,说法正确,故C不符合题意;
D、周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为(℃),说法正确,故D不符合题意;
故选:B.
【点睛】此题主要考查了折线统计图,由纵坐标看出气温,横坐标看出时间是解题的关键.
5.若一组数据的方差为2,则数据的方差是( )
A.2 B.5 C.6 D.11
【答案】A
【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.
【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为,现在的平均数为,
原来的方差,
现在的方差,
,
.
故选:A.
【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
6.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为和,则与的大小关系是( )
测试次数 1 2 3 4 5
甲 5 10 9 3 8
乙 8 6 8 6 7
A. B. C. D.无法确定
【答案】A
【分析】先分别求出甲、乙的平均数,再求出甲、乙的方差即可得出答案.
【详解】解:甲的平均数为,
甲的方差为,
乙的平均数为,
乙的方差为,
∵,
∴.
故选:A.
【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,,,…的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )
A.摸出“北斗”小球的可能性最大 B.摸出“天眼”小球的可能性最大
C.摸出“高铁”小球的可能性最大 D.摸出三种小球的可能性相同
【答案】C
【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.
【详解】解:盒中小球总量为:(个),
摸出“北斗”小球的概率为:,
摸出“天眼”小球的概率为:,
摸出“高铁”小球的概率为:,
因此摸出“高铁”小球的可能性最大.
故选C.
【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.
8.剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )
A. B. C. D.
【答案】C
【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.
【详解】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,
∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是,
故选:C.
【点睛】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.
9.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:,,,,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是( )
A. B. C. D.
【答案】A
【分析】利用概率公式进行计算即可.
【详解】解:由题意,得:;
故选A.
【点睛】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.
10.在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为P.下列说法正确的是( )
A.试验次数越多,f越大
B.f与P都可能发生变化
C.试验次数越多,f越接近于P
D.当试验次数很大时,f在P附近摆动,并趋于稳定
【答案】D
【分析】根据频率的稳定性解答即可.
【详解】解:在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且趋于稳定这个性质称为频率的稳定性.
故选:D.
【点睛】本题考查了频率与概率,掌握频率的稳定性是关键.
二.填空题(共6小题,满分18分,每小题3分)
11.某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:
使用寿命
灯泡只数 5 10 12 17 6
根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为______只.
【答案】460
【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.
【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为(只),
故答案为:460.
【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.
12.一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则_________.
【答案】9
【分析】根据概率公式列分式方程,解方程即可.
【详解】解:从中任意摸出一个球是红球的概率为,
,
去分母,得,
解得,
经检验是所列分式方程的根,
,
故答案为:9.
【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.
13.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:
项目 应聘者 综合知识 工作经验 语言表达
甲
乙
丙
如果将每位应聘者的综合知识、工作经验、语言表达的成绩按的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是___________.
【答案】乙
【分析】分别计算甲、乙、丙三名应聘者的成绩的加权平均数,比较大小即可求解.
【详解】解:,
,
,
∵
∴被录用的是乙,
故答案为:乙.
【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算方法是解题的关键.
14.小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是___________.
【答案】/度
【分析】根据“新材料”的占比乘以,即可求解.
【详解】解:“新材料”所对应扇形的圆心角度数是,
故答案为:.
【点睛】本题考查了求扇形统计图的圆心角的度数,熟练掌握求扇形统计图的圆心角的度数是解题的关键.
15.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有 _____只A种候鸟.
【答案】800
【分析】在样本中“200只A种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.
【详解】解:设该湿地约有x只A种候鸟,
则200:10=x:40,
解得x=800.
故答案为:800.
【点睛】本题主要考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
16.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:),结果统计如下:
品种 第一株 第二株 第三株 第四株 第五株 平均数
甲 32 30 25 18 20 25
乙 28 25 26 24 22 25
则两个大豆品种中光合作用速率更稳定的是_________(填“甲”或“乙”).
【答案】乙
【分析】分别求甲、乙两品中的方差即可判断;
【详解】解:
∴乙更稳定;
故答案为:乙.
【点睛】本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.
三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)
17.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.
(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为_;
(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.
【答案】(1)
(2)
【分析】(1)直接由概率公式求解即可;
(2)列表或画树状图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,再由概率公式求解即可.
【详解】(1)解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,
从中随机抽取1张,抽得扑克牌上的数字为3的概率为,
故答案为:;
(2)解:画树状图如下:
如图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,
抽得2张扑克牌的数字不同的概率为.
【点睛】本题考查用列表或画树状图求概率,列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合两步或两步以上完成的事件,解题的关键是能准确利用列表法或画树状图法找出总情况数及所求情况数.
18.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.
【答案】
【分析】采用列表法列举即可求解.
【详解】根据题意列表如下:
由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,
故所求概率为:3÷4=,
即两次分数之和不大于3的概率为.
【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.
19.甲、乙两位同学相约打乒乓球.
(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;
(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?
【答案】(1)
(2)公平.理由见解析
【分析】(1)用列表法或画树状图法列举出所有等可能的结果,再用乙选中球拍C的结果数除以总的结果数即可;
(2)分别求出甲先发球和乙先发球的概率,再比较大小,如果概率相同则公平,否则不公平.
【详解】(1)解:画树状图如下:
一共有12种等可能的结果,其中乙选中球拍C有3种可能的结果,
∴乙选中球拍C的概率;
(2)解:公平.理由如下:
画树状图如下:
一共有4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有2种可能的结果,
∴甲先发球的概率,
乙先发球的概率,
∵,
∴这个约定公平.
【点睛】本题考查列表法或画树状图法求等可能事件的概率,游戏的公平性,掌握列表法或画树状图法求等可能事件的概率的方法是解题的关键.
20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.
根据图中信息,解答下列问题:
(1)这5期的集训共有多少天?
(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?
(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.
【答案】(1)55天
(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒
(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)
【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;
(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;
(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.
【详解】(1)∵(天).
∴这5期的集训共有55天.
(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,
进步了(秒),
∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.
(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)
【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
21.如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“”是指该枚古钱币的直径为,厚度为,质量为.已知这些古钱币的材质相同.
根据图中信息,解决下列问题.
(1)这5枚古钱币,所标直径的平均数是_____,所标厚度的众数是____,所标质量的中位数是___ g;
(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:
名称 文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元
总质量/g 58.7 58.1 55.2 54.3 55.8
请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.
【答案】(1)45.74,2.3,21.7;
(2)“鹿鹤同春”的实际质量约为21.0克.
【分析】(1)根据平均数、众数和中位数的定义求解即可;
(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.
【详解】(1)解:平均数:;
这5枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,
其中2.3mm出现了2次,出现的次数最多,
∴这5枚古钱币的厚度的众数为2.3mm;
将这5枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,
∴这5枚古钱币质量的中位数为21.7g;
故答案为:45.74,2.3,21.7;
(2)
名称 文星高照 状元及第 鹿鹤同春 顺风大吉 连中三元
总质量/g 58.7 58.1 55.2 54.3 55.8
盒标质量 24.4 24.0 13.0 20.0 21.7
盒子质量 34.3 34.1 42.2 34.3 34.1
∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.
其余四个盒子质量的平均数为:,
55.2-34.2=21.0g
故“鹿鹤同春”的实际质量约为21.0克.
【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.
22.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.
游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.
(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;
(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?
【答案】(1)见解析,(a,b)所有可能出现的结果总数有8种;
(2)游戏公平,理由见解析
【分析】(1)列表列出所有等可能结果即可;
(2)由和为偶数的有8种情况,而和为奇数的有4种情况,即可判断.
【详解】(1)解:列表如下:
1 2 3 4
1 (1,1) (2,1) (3,1) (4,1)
2 (1,2) (2,2) (3,2) (4,2)
由表格可知,(a,b)所有可能出现的结果总数有8种;
(2)解:游戏公平,
由表格知a+b为奇数的情况有4种,为奇数的情况也有4种,
概率相同,都是,所以游戏公平.
【点睛】本题主要考查游戏的公平性及概率的计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.
23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.
a.甲、乙两位同学得分的折线图:
b.丙同学得分:
10,10,10,9,9,8,3,9,8,10
c.甲、乙、丙三位同学得分的平均数:
同学 甲 乙 丙
平均数 8.6 8.6 m
根据以上信息,回答下列问题:
(1)求表中m的值;
(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);
(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).
【答案】(1)
(2)甲
(3)丙
【分析】(1)根据平均数的定义求出丙的平均数即可求解.
(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.
(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.
【详解】(1)解:丙的平均数:,
则.
(2),
,
,
∴甲、乙两位同学中,评委对甲的评价更一致,
故答案为:甲.
(3)由题意得,去掉一个最高分和一个最低分后的平均分为:
甲:,
乙:,
丙:,
∵去掉一个最高分和一个最低分后丙的平均分最高,
因此最优秀的是丙,
故答案为:丙.
【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.
24.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.
小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图
选手 测试成绩/分 总评成绩/分
采访 写作 摄影
小悦 83 72 80 78
小涵 86 84 ▲ ▲
(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;
(2)请你计算小涵的总评成绩;
(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.
【答案】(1)69,69,70
(2)82分
(3)小涵能入选,小悦不一定能入选,见解析
【分析】(1)从小到大排序,找出中位数、众数即可,算出平均数.
(2)将采访、写作、摄影三项的测试成绩按的比例计算出的总评成绩即可.
(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.
【详解】(1)从小到大排序,
67,68,69,69,71,72, 74,
∴中位数是69,
众数是69,
平均数:
69,69,70
(2)解: (分).
答:小涵的总评成绩为82分.
(3)结论:小涵能入选,小悦不一定能入选
理由:由频数直方图可得,总评成绩不低于80分的学生有10名,总评成绩不低于70分且小宁80分的学生有6名.小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.
【点睛】此题考查了中位数、众数、平均数,解题的关键是熟悉相关概念.
25.在“双减”背景下,某区教育部门想了解该区A,B两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:
【收集数据】A学校50名九年级学生中,课后书面作业时长在70.5≤x<80.5组的具体数据如下:
74,72,72,73,74,75,75,75,75,
75,75,76,76,76,77,77,78,80
【整理数据】不完整的两所学校的频数分布表如下,不完整的A学校频数分布直方图如图所示:
组别 50.5≤x<60.5 60.5≤x<70.5 70.5≤x<80.5 80.5≤x<90.5 90.5≤x<100.5
A学校 5 15 x 8 4
B学校 7 10 12 17 4
【分析数据】两组数据的平均数、众数、中位数、方差如下表:
特征数 平均数 众数 中位数 方差
A学校 74 75 y 127.36
B学校 74 85 73 144.12
根据以上信息,回答下列问题:
(1)本次调查是_____调查(选填“抽样”或“全面”);
(2)统计表中,x=_____,y=_____;
(3)补全频数分布直方图;
(4)在这次调查中,课后书面作业时长波动较小的是_____学校(选填“A”或“B”);
(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有_____人.
【答案】(1)抽样
(2)
(3)见解析
(4)A
(5)920
【分析】(1)根据题意知本次调查是抽样调查;
(2)用总数减去其它组的频数求x,利用求中位数的方法求y;
(3)根据A学校的频数分布表补全频数分布直方图;
(4)根据方差即可判断;
(5)分别求出在90分钟内(包括90分钟)完成当日课后书面作业的学生即可.
【详解】(1)根据题意知本次调查是抽样调查;
故答案为:抽样.
(2)x=50-5-15-8-4=18,
中位数为第25个和第26个平均数
故答案为:18,74.5.
(3)补全频数分布直方图:
(4)因为A学校的方差为127.36,B学校的方差为144.12,
127.36<144.12,
∴课后书面作业时长波动较小的是A学校,
故答案为:A.
(5)(人)
故答案为:920.
【点睛】本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)