中小学教育资源及组卷应用平台
知识必备02 方程与不等式
方法1:不等式(组)中的分类讨论
1.(2022 黔东南州)在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是( )
A.x≤﹣1 B.x≤﹣1或x≥2 C.﹣1≤x≤2 D.x≥2
2.(2023 淄博)某古镇为发展旅游产业,吸引更多的游客前往游览,助力乡村振兴,决定在“五一”期间对团队*旅游实行门票特价优惠活动,价格如下表:
购票人数m(人) 10≤m≤50 51≤m≤100 m>100
每人门票价(元) 60 50 40
*题中的团队人数均不少于10人.
现有甲、乙两个团队共102人,计划利用“五一”假期到该古镇旅游,其中甲团队不足50人,乙团队多于50人.
(1)如果两个团队分别购票,一共应付5580元,问甲、乙团队各有多少人?
(2)如果两个团队联合起来作为一个“大团队”购票,比两个团队各自购票节省的费用不少于1200元,问甲团队最少多少人?
方法2:方程中的转化思想
3.(2023 德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=____.
方法3:根的判别式
4.(2023 广元)关于x的一元二次方程2x2﹣3x+=0根的情况,下列说法中正确的是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法确定
5.(2022 泰州)方程x2﹣2x+m=0有两个相等的实数根,则m的值为 ____.
方法4:增长率问题
6.(2022 河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )
A.30(1+x)2=50 B.30(1﹣x)2=50
C.30(1+x2)=50 D.30(1﹣x2)=50
7.(2022 宁夏)受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是( )
A.6.2(1+x)2=8.9
B.8.9(1+x)2=6.2
C.6.2(1+x2)=8.9
D.6.2(1+x)+6.2(1+x)2=8.9
方法5:图形面积问题
8.(2023 黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )
A.5m B.70m C.5m或70m D.10m
9.(2022 泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?
10.(2022 德州)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.
(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;
(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.
方法6:商品销售问题
11.(2022 毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)
类别价格 A款钥匙扣 B款钥匙扣
进货价(元/件) 30 25
销售价(元/件) 45 37
(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
12.(2023 赤峰)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同;3件甲种电子产品比2件乙种电子产品的销售额多1500元.
(1)求甲种电子产品与乙种电子产品销售单价各多少元?
(2)若使甲乙两种电子产品的销售总收入不低于5400万元,则至少销售甲种电子产品多少件?
13.(2022 湖北)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.
(1)买一份甲种快餐和一份乙种快餐各需多少元?
(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?
14.(2023 内江)某水果种植基地为响应政府号召,大力种植优质水果.某超市看好甲、乙两种优质水果的市场价值,经调查,这两种水果的进价和售价如表所示:
水果种类 进价(元/千克) 售价(元/千克)
甲 a 20
乙 b 23
该超市购进甲种水果15千克和乙种水果5千克需要305元;购进甲种水果20千克和乙种水果10千克需要470元.
(1)求a,b的值;
(2)该超市决定每天购进甲、乙两种水果共100千克进行销售,其中甲种水果的数量不少于30千克,且不大于80千克.实际销售时,若甲种水果超过60千克,则超过部分按每千克降价3元销售,求超市当天售完这两种水果获得的利润y(元)与购进甲种水果的数量x(千克)之间的函数关系式,并写出x的取值范围;
(3)在(2)的条件下,超市在获得的利润y(元)取得最大值时,决定售出的甲种水果每千克降价3m元,乙种水果每千克降价m元,若要保证利润率(利润率=)不低于16%,求m的最大值.
方法7:方案选择问题
15.(2022 牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,请解答下列问题:
(1)求A,B两种防疫用品每箱的成本;
(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?
(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)
16.(2023 湘西州)2023年“地摊经济”成为社会关注的热门话题,“地摊经济”有着启动资金少、管理成本低等优点,特别是在受到疫情冲击后的经济恢复期,“地摊经济”更是成为许多创业者的首选,甲经营了某种品牌小电器生意,采购2台A种品牌小电器和3台B种品牌小电器,共需要90元;采购3台A种品牌小电器和1台B种品牌小电器,共需要65元.销售一台A种品牌小电器获利3元,销售一台B种品牌小电器获利4元.
(1)求购买1台A种品牌小电器和1台B种品牌小电器各需要多少元?
(2)甲用不小于2750元,但不超过2850元的资金一次性购进A、B两种品牌小电器共150台,求购进A种品牌小电器数量的取值范围.
(3)在(2)的条件下,所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,请说明甲合理的采购方案有哪些?并计算哪种采购方案获得的利润最大,最大利润是多少?
易错点1:运用等式性质时,两边同除以一个数必须要注意不能为0的情况.
1.(2022 青海)根据等式的性质,下列各式变形正确的是( )
A.若=,则a=b B.若ac=bc,则a=b
C.若a2=b2,则a=b D.若﹣x=6,则x=﹣2
易错点2:一元一次方程的解以及解方程:计算思路要清晰、计算要准确,否则很容易失分。
2.(2003 绵阳)当a=0时,方程ax+b=0(其中x是未知数,b是已知数)( )
A.有且只有一个解 B.无解
C.有无限多个解 D.无解或有无限多个解
易错点3:解二元一次方程:注意题目给出的条件,充分利用条件进行解答。
3.(2023 无锡)下列4组数中,不是二元一次方程2x+y=4的解的是( )
A. B. C. D.
易错点4:一元二次方程中相关字母的取值范围的题目易忽视二次项系数不为0。解这类问题一定要掌握一元二次方程的定义,注意特殊字母的取值范围:
4.(2023 桐柏县一模)关于x的方程(m+1)x|m|+1﹣mx+6=0是一元二次方程,则m的值是( )
A.﹣1 B.3 C.1 D.1或﹣1
易错点5:一元二次方程的解:灵活运用求解的几种方法,另外,结合整体代入法进行考查时也是是一个特别容易出错的点,需特别留意。
5.(2023 枣庄)若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为 ____.
6.(2023 娄底)若m是方程x2﹣2x﹣1=0的根,则m2+=____.
易错点6:解分式方程时首要步骤去分母,分数线相当于括号,易忘记根检验,导致运算结果出错。另外注意方程无解时,相关字母可能会出现多个解,容易遗漏:
7.(2023 山西)解方程:.
8.(2023 陕西)解方程:.
9.(2023 西藏)解分式方程:.
10.(2023 广西)解分式方程:.
11.(2022 眉山)解方程:=.
12.(2022 青海)解方程:﹣1=.
13.(2022 玉林)解方程:=.
易错点7:运用不等式的性质3时,容易忘记改变不等号的方向而导致结果出错。注意结合不等号两边的正负性灵活转变不等号的方向。不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。:
14.(2022 宿迁)如果x<y,那么下列不等式正确的是( )
A.x﹣1>y﹣1 B.x+1>y+1 C.﹣2x<﹣2y D.2x<2y
易错点8:关于一元一次不等式组有解、无解的条件易忽视相等的情况。解不等式过程中,容易忽视整数解的正确选择,需要考虑到解题步骤中要满足每个步骤及相关条件:
15.(2022 内蒙古)关于x的不等式组无解,则a的取值范围是 ____.
16.(2022 黑龙江)若关于x的一元一次不等式组的解集为x<2,则a的取值范围是 ____.
易错点9:不等式(组)的解的问题要先确定解集,注意包含与不包含,以及对正整数,整数,非负整数等关键词理解要透彻,容易概念混乱。确定解集的方法运用数轴。:
17.(2023 陕西)解不等式组:.
18.(2023 福建)解不等式组:.
19.(2023 常州)解不等式组,把解集在数轴上表示出来,并写出整数解.
20.(2023 济南)解不等式组:,并写出它的所有整数解.
21.(2022 淮安)解不等式组:并写出它的正整数解.
22.(2022 扬州)解不等式组并求出它的所有整数解的和.
23.(2022 西宁)解不等式组:,并写出该不等式组的最大整数解.
易错点10:方程与不等式应用于实际问题时应注意:(1)单位要统一;(2)找等量关系必须准确;(3)列方程组时要避免出现0=0的情况。在一元二次方程中容易忽略多个解
24.(2023 怀化)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.
(1)求原计划租用A种客车多少辆?这次研学去了多少人?
(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?
(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?
25.(2022 遂宁)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元;
(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?
26.(2023 淮安)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD(如图),生态园一面靠墙(墙足够长),另外三面用18m的篱笆围成.生态园的面积能否为40m2?如果能,请求出AB的长;如果不能,请说明理由.
27.(2023 郴州)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
28.(2022 眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
29.(2022 毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)
类别价格 A款钥匙扣 B款钥匙扣
进货价(元/件) 30 25
销售价(元/件) 45 37
(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
一.一元一次方程的解(共1小题)
1.(2023 永州)关于x的一元一次方程2x+m=5的解为x=1,则m的值为( )
A.3 B.﹣3 C.7 D.﹣7
二.解一元一次方程(共1小题)
2.(2023 海南)若代数式x+2的值为7,则x等于( )
A.9 B.﹣9 C.5 D.﹣5
三.由实际问题抽象出一元一次方程(共1小题)
3.(2023 成都)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为( )
A.(x+4.5)=x﹣1 B.(x+4.5)=x+1
C.(x+1)=x﹣4.5 D.(x﹣1)=x+4.5
四.一元一次方程的应用(共5小题)
4.(2023 台湾)有一东西向的直线吊桥横跨溪谷,小维、阿良分别从西桥头、东桥头同时开始往吊桥的另一头笔直地走过去,如图所示,已知小维从西桥头走了84步,阿良从东桥头走了60步时,两人在吊桥上的某点交会,且交会之后阿良再走70步恰好走到西桥头,若小维每步的距离相等,阿良每步的距离相等,则交会之后小维再走多少步会恰好走到东桥头( )
A.46 B.50 C.60 D.72
5.(2023 德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=____.
6.(2023 河北)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:
投中位置 A区 B区 脱靶
一次计分(分) 3 1 ﹣2
在第一局中,珍珍投中A区4次,B区2次.脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
7.(2023 临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.
(1)这台M型平板电脑价值多少元?
(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?
8.(2023 重庆)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.
(1)求甲、乙两区各有农田多少亩?
(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?
五.由实际问题抽象出二元一次方程(共1小题)
9.(2023 温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )
A.x+y=30 B.x+y=30 C.x+y=30 D.x+y=30
六.二元一次方程的应用(共3小题)
10.(2023 黑龙江)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )
A.5种 B.6种 C.7种 D.8种
11.(2023 西藏)列方程(组)解应用题
如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.
(1)求一块长方形墙砖的长和宽;
(2)求电视背景墙的面积.
12.(2023 海南)2023年5月10日,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射成功,为了普及航空航天科普知识,某校组织学生去文昌卫星发射中心参观学习.已知该校租用甲、乙两种不同型号的客车共15辆,租用1辆甲型客车需600元,1辆乙型客车需500元,租车费共8000元,问甲、乙两种型号客车各租多少辆?
七.二元一次方程组的解(共1小题)
13.(2023 眉山)已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为( )
A.0 B.1 C.2 D.3
八.解二元一次方程组(共3小题)
14.(2023 衢州)下列各组数满足方程2x+3y=8的是( )
A. B. C. D.
15.(2023 朝阳)已知关于x,y的方程组的解满足x﹣y=4,则a的值为 ____.
16.(2023 河南)方程组的解为 ____.
九.由实际问题抽象出二元一次方程组(共3小题)
17.(2023 西宁)《孙子算经》中有一道题,原文是:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得( )
A. B.
C. D.
18.(2023 浙江)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为 ____.
19.(2023 威海)《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x人,该物品价值y元,根据题意列方程组:____.
一十.二元一次方程组的应用(共3小题)
20.(2023 巴中)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6 B.8 C.12 D.16
21.(2023 重庆)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.
(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?
(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?
22.(2023 宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.
豆沙粽数量 肉粽数量 付款金额
小欢妈妈 20 30 270
小乐妈妈 30 20 230
(1)求豆沙粽和肉粽的单价;
(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);
①根据上表,求豆沙粽和肉粽优惠后的单价;
②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为(80﹣4m)包,(4m+8)包,A,B两种包装的销售总额为17280元.求m的值.
十一.一元二次方程的解(共1小题)
23.(2023 绵阳)若x=3是关于x的一元二次方程的一个根,下面对a的值估计正确的是( )
A.<a<1 B.1<a< C.<a<2 D.2<a<
十二.解一元二次方程-配方法(共1小题)
24.(2023 赤峰)用配方法解方程x2﹣4x﹣1=0时,配方后正确的是( )
A.(x+2)2=3 B.(x+2)2=17 C.(x﹣2)2=5 D.(x﹣2)2=17
十三.根的判别式(共2小题)
25.(2023 锦州)若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是( )
A.k< B.k≤ C.k<且k≠0 D.k≤且k≠0
26.(2023 朝阳)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k>且k≠1 B.k> C.k≥且k≠1 D.k≥
十四.根与系数的关系(共5小题)
27.(2023 西藏)已知一元二次方程x2﹣3x+2=0的两个根为x1、x2,则的值为( )
A.﹣3 B. C.1 D.
28.(2023 岳阳)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根x1、x2,且x1+x2+x1 x2=2,则实数m=____.
29.(2023 湖北)已知一元二次方程x2﹣3x+k=0的两个实数根为x1,x2,若x1x2+2x1+2x2=1,则实数k=____.
30.(2023 襄阳)关于x的一元二次方程x2+2x+3﹣k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若方程的两个根为α,β,且k2=αβ+3k,求k的值.
31.(2023 南充)已知关于x的一元二次方程x2﹣(2m﹣1)x﹣3m2+m=0.
(1)求证:无论m为何值,方程总有实数根;
(2)若x1,x2是方程的两个实数根,且+=﹣,求m的值.
十五.由实际问题抽象出一元二次方程(共2小题)
32.(2023 阜新)近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两月售价的月均下降率是x,则所列方程正确的是( )
A.16(1+x)2=23 B.23(1﹣x)2=16
C.23﹣23(1﹣x)2=16 D.23(1﹣2x)=16
33.(2023 衢州)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x人,则可得到方程( )
A.x+(1+x)=36 B.2(1+x)=36
C.1+x+x(1+x)=36 D.1+x+x2=36
十六.一元二次方程的应用(共1小题)
34.(2023 大连)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求2020﹣2022年买书资金的平均增长率.
十七.配方法的应用(共1小题)
35.(2023 盐城)课堂上,老师提出了下面的问题:
已知3a>b>0,M=,N=,试比较M与N的大小.
小华:整式的大小比较可采用“作差法”.
老师:比较x2+1与2x﹣1的大小.
小华:∵(x2+1)﹣(2x﹣1)=x2+1﹣2x+1=(x﹣1)2+1>0,
∴x2+1>2x﹣1.
老师:分式的大小比较能用“作差法”吗?
…
(1)请用“作差法”完成老师提出的问题.
(2)比较大小: ____.(填“>”“=”或“<”)
十八.分式方程的解(共1小题)
36.(2023 黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是( )
A.m≤2 B.m≥2
C.m≤2且m≠﹣2 D.m<2且m≠﹣2
十九.解分式方程(共2小题)
37.(2023 益阳)分式方程的解是 ____.
38.(2023 赤峰)方程+=1的解为 ____.
二十.分式方程的增根(共1小题)
39.(2023 巴中)关于x的分式方程+=3有增根,则m=____.
二十一.由实际问题抽象出分式方程(共5小题)
40.(2023 青海)为了缅怀革命先烈,传承红色精神,青海省某学校八年级师生在清明节期间前往距离学校15km的烈士陵园扫墓.一部分师生骑自行车先走,过了30min后,其余师生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车师生速度的2倍,设骑车师生的速度为x km/h.根据题意,下列方程正确的是( )
A. B.
C. D.
41.(2023 云南)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是( )
A. B.
C. D.
42.(2023 青岛)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x元,则x满足的分式方程为 ____.
43.(2023 呼和浩特)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为 ____km/h.
44.(2023 宁夏)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.
(1)求两种型号玩具的单价各是多少元?
根据题意,甲、乙两名同学分别列出如下方程:
甲:=+30,解得x=5,经检验x=5是原方程的解.
乙:=1.6×,解得x=65,经检验x=65是原方程的解.
则甲所列方程中的x表示 ____,乙所列方程中的x表示 ____
(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?
二十二.分式方程的应用(共4小题)
45.(2023 南通)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:
信息一
工程队 每天施工面积(单位:m2) 每天施工费用(单位:元)
甲 x+300 3600
乙 x 2200
信息二
甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.
(1)求x的值;
(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?
46.(2023 通辽)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
47.(2023 常德)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.
(1)求A型玩具和B型玩具的进价分别是多少?
(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?
48.(2023 长春)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?
二十三.不等式的解集(共1小题)
49.(2023 黄石)若实数a使关于x的不等式组的解集为﹣1<x<4,则实数a的取值范围为 ____.
二十四.解一元一次不等式(共2小题)
50.(2023 盐城)解不等式2x﹣3<,并把它的解集在数轴上表示出来.
51.(2023 宁夏)解不等式组 .
下面是某同学的部分解答过程,请认真阅读并完成任务:
解:由①得:
4﹣2(2x﹣1)>3x﹣1…第1步
4﹣4x+2>3x﹣1…第2步
﹣4x﹣3x>﹣1﹣4﹣2
﹣7x>﹣7…第3步
x>1…第4步
任务一:该同学的解答过程第 ____步出现了错误,错误原因是 ____;
不等式①的正确解集是 ____;
任务二:解不等式②,并写出该不等式组的解集.
二十五.一元一次不等式的应用(共3小题)
52.(2023 眉山)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.
(1)求甲,乙两种书的单价分别为多少元;
(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?
53.(2023 哈尔滨)佳衣服装厂给某中学用同样的布料生产A,B两种不同款式的服装,每套A款服装所用布料的米数相同,每套B款服装所用布料的米数相同.若1套A款服装和2套B款服装需用布料5米,3套A款服装和1套B款服装需用布料7米.
(1)求每套A款服装和每套B款服装需用布料各多少米;
(2)该中学需要A,B两款服装共100套,所用布料不超过168米,那么该服装厂最少需要生产多少套B款服装?
54.(2023 湖北)创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.
(1)求两种型号垃圾桶的单价;
(2)若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?
二十六.解一元一次不等式组(共4小题)
55.(2023 广州)不等式组的解集在数轴上表示为( )
A. B.
C. D.
56.(2023 威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是( )
A.
B.
C.
D.
57.(2023 北京)解不等式组:.
58.(2023 湘潭)解不等式组:,并把它的解集在数轴上表示出来.
二十七.一元一次不等式组的整数解(共2小题)
59.(2023 绵阳)关于x的不等式组有且只有两个整数解,则符合条件的所有整数m的和为( )
A.11 B.15 C.18 D.21
60.(2023 宜宾)若关于x的不等式组所有整数解的和为14,则整数a的值为 ____.
知识必备02 方程与不等式
方法1:不等式(组)中的分类讨论
1.(2022 黔东南州)在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是( )
A.x≤﹣1 B.x≤﹣1或x≥2 C.﹣1≤x≤2 D.x≥2
【分析】以﹣1和2为界点,将数轴分成三部分,对x的值进行分类讨论,然后根据绝对值的意义去绝对值符号,分别求出代数式的值进行比较即可.
【解答】解:如图,
当x<﹣1时,x+1<0,x﹣2<0,
|x+1|+|x﹣2|
=﹣(x+1)﹣(x﹣2)
=﹣x﹣1﹣x+2
=﹣2x+1>3;
当x>2时,x+1>0,x﹣2>0,
|x+1|+|x﹣2|
=(x+1)+(x﹣2)
=x+1+x﹣2
=2x﹣1>3;
当﹣1≤x≤2时,x+1≥0,x﹣2≤0,
|x+1|+|x﹣2|
=(x+1)﹣(x﹣2)
=x+1﹣x+2=3;
综上所述,当﹣1≤x≤2时,|x+1|+|x﹣2|取得最小值,
所以当|x+1|+|x﹣2|取得最小值时,x的取值范围是﹣1≤x≤2.
故选C.
【点评】本题结合数轴考查了绝对值的意义以及绝对值的性质,解题的关键是以﹣1和2为界点对x的值进行分类讨论,进而得出代数式的值.
2.(2023 淄博)某古镇为发展旅游产业,吸引更多的游客前往游览,助力乡村振兴,决定在“五一”期间对团队*旅游实行门票特价优惠活动,价格如下表:
购票人数m(人) 10≤m≤50 51≤m≤100 m>100
每人门票价(元) 60 50 40
*题中的团队人数均不少于10人.
现有甲、乙两个团队共102人,计划利用“五一”假期到该古镇旅游,其中甲团队不足50人,乙团队多于50人.
(1)如果两个团队分别购票,一共应付5580元,问甲、乙团队各有多少人?
(2)如果两个团队联合起来作为一个“大团队”购票,比两个团队各自购票节省的费用不少于1200元,问甲团队最少多少人?
【分析】(1)设甲团队有x人,乙团队(102﹣x)人,但需要考虑乙团队人数是否大于100,所以分类讨论即可.甲团队按票价是每人80元,乙团队按票价是每人60元,如果乙超过100人,大概需要缴纳4000多元,但是5580元减去4000多元,剩下的钱不足以构成甲的人数,因为此时甲的人数只能是1人,所以这种情况省略;所以甲人数在50以下,乙人数在51到100之间,联列方程即可;
(2)两个团队要合起来购票的话,每人40元,列出一共购票的钱和各自购票的钱之和,然后建立不等式即可求解;
【解答】解:(1)设甲人数x人,乙人数(102﹣x)人;
∵当乙大于100人时,此时甲人数只能是1人,共花的价格不够5580元;
∴乙人数在51到100之间,甲人数在10到50之间;
∴列方程得:60x+(102﹣x)50=5580;
解之得:x=48,102﹣x=54;
∴甲48人,乙54人;
答:甲团队48人,乙团队54人.
(2)设甲人数x人,乙人数(102﹣x)人;
甲乙一起买价格:102×40=4080(元);
甲乙分开买价格:60x+(102﹣x)50;
∴60x+(102﹣x)50﹣4080≥1200;
解之得:x≥18.
∴甲最少18人;
答:甲团队最少18人.
【点评】本题考查学生不等式的基本应用,属于基础题.
方法2:方程中的转化思想
3.(2023 德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=__39__.
【分析】设九宫格中最中间的数为x,由于第1列中间数与第2行的最左侧的数重合,建立方程16+4=7+x,求得x,根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和等于最中间数的三倍所以m=3x.
【解答】解:设九宫格中最中间的数为x,
∵第1列中间数与第2行的最左侧的数重合,
∴16+4=7+x,
∴x=13,
根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和等于最中间数的三倍,
∴m=3x=39,
故答案为:39.
【点评】本题考查了九宫格的知识,根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和相等的规律,观察九宫格中数的排列特征建立方程是解决问题的关键.
方法3:根的判别式
4.(2023 广元)关于x的一元二次方程2x2﹣3x+=0根的情况,下列说法中正确的是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法确定
【分析】先确定a、b、c的值,在计算b2﹣4ac即可.
【解答】解:∵a=2,b=﹣3,c=,
∴b2﹣4ac=9﹣12=﹣3<0,
∴方程没有实数根.
故选:C.
【点评】此题考查了根的判别式,一元二次方程中根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程无解.
5.(2022 泰州)方程x2﹣2x+m=0有两个相等的实数根,则m的值为 __1__.
【分析】由题可得Δ=(﹣2)2﹣4×1×m=0,即可得m的值.
【解答】解:∵方程x2﹣2x+m=0有两个相等的实数根,
∴Δ=(﹣2)2﹣4×1×m=0,
解得m=1.
故答案为:1.
【点评】本题考查一元二次方程根的判别式,若一元二次方程有两个不相等的实数根,则Δ=b2﹣4ac>0;若一元二次方程有两个相等的实数根,则Δ=b2﹣4ac=0;若一元二次方程没有实数根,则Δ=b2﹣4ac<0.
方法4:增长率问题
6.(2022 河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )
A.30(1+x)2=50 B.30(1﹣x)2=50
C.30(1+x2)=50 D.30(1﹣x2)=50
【分析】若设该厂家一月份到三月份的口罩产量的月平均增长率为x,某厂家今年一月份的口罩产量是30万个,则二月份的口罩产量是30(1+x)万个,三月份的口罩产量是30(1+x)2万个,根据三月份的口罩产量是50万个,列出方程即可.
【解答】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x,
由题意得,30(1+x)2=50.
故选:A.
【点评】此题主要考查了由实际问题抽象出一元二次方程,正确表示出各月的产量是解题关键.
7.(2022 宁夏)受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是( )
A.6.2(1+x)2=8.9
B.8.9(1+x)2=6.2
C.6.2(1+x2)=8.9
D.6.2(1+x)+6.2(1+x)2=8.9
【分析】利用该地92号汽油五月底的价格=该地92号汽油三月底的价格×(1+该地92号汽油价格这两个月平均每月的增长率)2,即可得出关于x的一元二次方程,此题得解.
【解答】解:依题意得6.2(1+x)2=8.9,
故选:A.
【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的感觉.
方法5:图形面积问题
8.(2023 黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是( )
A.5m B.70m C.5m或70m D.10m
【分析】设小路的宽是x m,则余下的部分可合成长为(100﹣2x)m,宽为(50﹣2x)m的矩形,根据花圃的面积是3600m2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.
【解答】解:设小路的宽是x m,则余下的部分可合成长为(100﹣2x)m,宽为(50﹣2x)m的矩形,
根据题意得:(100﹣2x)(50﹣2x)=3600,
整理得:x2﹣75x+350=0,
解得:x1=5,x2=70(不符合题意,舍去),
∴小路的宽是5m.
故选:A.
【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
9.(2022 泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?
【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.
【解答】解:设路宽应为x米
根据等量关系列方程得:(50﹣2x)(38﹣2x)=1260,
解得:x=4或40,
40不合题意,舍去,
所以x=4,
答:道路的宽应为4米.
【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
10.(2022 德州)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.
(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;
(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.
【分析】(1)设将绿地的长、宽增加x m,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;
(2)设将绿地的长、宽增加y m,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.
【解答】解:(1)设将绿地的长、宽增加x m,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,
根据题意得:(35+x)(15+x)=800,
整理得:x2+50x﹣275=0
解得:x1=5,x2=﹣55(不符合题意,舍去),
∴35+x=35+5=40,15+x=15+5=20.
答:新的矩形绿地的长为40m,宽为20m.
(2)设将绿地的长、宽增加y m,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,
根据题意得:(35+y):(15+y)=5:3,
即3(35+y)=5(15+y),
解得:y=15,
∴(35+y)(15+y)=(35+15)×(15+15)=1500.
答:新的矩形绿地面积为1500m2.
【点评】本题考查了一元二次方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出一元一次方程.
方法6:商品销售问题
11.(2022 毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)
类别价格 A款钥匙扣 B款钥匙扣
进货价(元/件) 30 25
销售价(元/件) 45 37
(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
【分析】(1)设购进A款钥匙扣x件,B款钥匙扣y件,利用总价=单价×数量,结合该网店第一次用850元购进A、B两款钥匙扣共30件,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,利用总价=单价×数量,结合总价不超过2200元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题;
(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出(78﹣2a)件,利用平均每天销售B款钥匙扣获得的总利润=每件的销售利润×平均每天的销售量,即可得出关于a的一元二次方程,解之即可得出结论.
【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,
依题意得:,
解得:.
答:购进A款钥匙扣20件,B款钥匙扣10件.
(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,
依题意得:30m+25(80﹣m)≤2200,
解得:m≤40.
设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.
∵3>0,
∴w随m的增大而增大,
∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.
答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.
(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,
依题意得:(a﹣25)(78﹣2a)=90,
整理得:a2﹣64a+1020=0,
解得:a1=30,a2=34.
答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.
【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用、一元二次方程的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式;(3)找准等量关系,正确列出一元二次方程.
12.(2023 赤峰)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同;3件甲种电子产品比2件乙种电子产品的销售额多1500元.
(1)求甲种电子产品与乙种电子产品销售单价各多少元?
(2)若使甲乙两种电子产品的销售总收入不低于5400万元,则至少销售甲种电子产品多少件?
【分析】(1)设甲种电子产品的销售单价是x元,乙种电子产品的销售单价是y元,根据“2件甲种电子产品与3件乙种电子产品的销售额相同;3件甲种电子产品比2件乙种电子产品的销售额多1500元”,可列出关于x,y的二元一次方程组,解之即可得出结论;
(2)设销售甲种电子产品m万件,则销售乙种电子产品(8﹣m)万件,利用销售总额=销售单价×销售数量,结合销售总额不低于5400万元,可得出关于m的一元一次不等式,解之取其中的最小值,即可得出结论.
【解答】解:(1)设甲种电子产品的销售单价是x元,乙种电子产品的销售单价是y元,
根据题意得:,
解得:.
答:甲种电子产品的销售单价是900元,乙种电子产品的销售单价是600元;
(2)设销售甲种电子产品m万件,则销售乙种电子产品(8﹣m)万件,
根据题意得:900m+600(8﹣m)≥5400,
解得:m≥2,
∴m的最小值为2.
答:至少销售甲种电子产品2万件.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
13.(2022 湖北)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.
(1)买一份甲种快餐和一份乙种快餐各需多少元?
(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?
【分析】(1)设购买一份甲种快餐需要x元,购买一份乙种快餐需要y元,根据“买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元”,即可列出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买乙种快餐m份,则购买甲种快餐(55﹣m)份,利用总价=单价×数量,结合总价不超过1280元,即可列出关于m的一元一次不等式,解之取其中的最小值即可得出结论.
【解答】解:(1)设购买一份甲种快餐需要x元,购买一份乙种快餐需要y元,
依题意得:,
解得:.
答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.
(2)设购买乙种快餐m份,则购买甲种快餐(55﹣m)份,
依题意得:30(55﹣m)+20m≤1280,
解得:m≥37.
答:至少买乙种快餐37份.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
14.(2023 内江)某水果种植基地为响应政府号召,大力种植优质水果.某超市看好甲、乙两种优质水果的市场价值,经调查,这两种水果的进价和售价如表所示:
水果种类 进价(元/千克) 售价(元/千克)
甲 a 20
乙 b 23
该超市购进甲种水果15千克和乙种水果5千克需要305元;购进甲种水果20千克和乙种水果10千克需要470元.
(1)求a,b的值;
(2)该超市决定每天购进甲、乙两种水果共100千克进行销售,其中甲种水果的数量不少于30千克,且不大于80千克.实际销售时,若甲种水果超过60千克,则超过部分按每千克降价3元销售,求超市当天售完这两种水果获得的利润y(元)与购进甲种水果的数量x(千克)之间的函数关系式,并写出x的取值范围;
(3)在(2)的条件下,超市在获得的利润y(元)取得最大值时,决定售出的甲种水果每千克降价3m元,乙种水果每千克降价m元,若要保证利润率(利润率=)不低于16%,求m的最大值.
【分析】(1)根据信息列二元一次方程得出答案;
(2)分类讨论,分别求出30≤x≤60和60<x≤80时的函数关系;
(3求出当x为多少时,y值最大,利用利润率公式得到关于m的不等式,解出m的最大值.
【解答】解:(1)由题可列,
解得.
(2)由题可得当30≤x≤60时,
y=(20﹣14)x+(23﹣19)(100﹣x)=2x+400,
当60<x≤80时,
y=(20﹣3﹣14)(x﹣60)+(20﹣14)×60+(23﹣19)(100﹣x)=﹣x+580,
答:超市当天售完这两种水果获得的利润y(元)与购进甲种水果的数量x(千克)之间的函数关系为:y=.
(3)∵y=,
∴当x=60时,y的值最大,即y=520,
由题可列×100%≥16%,
解得m≤1.2,
答:m的最大值为1.2.
【点评】本题以应用题为背景考查了一次函数的应用、二元一次方程组的应用、解一元一次不等式,解题的关键是明确题意,根据公式正确列出关系式.本题难度适中,常为期末考试题.
方法7:方案选择问题
15.(2022 牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,请解答下列问题:
(1)求A,B两种防疫用品每箱的成本;
(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?
(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)
【分析】(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,利用数量=总价÷单价,结合用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,即可得出关于x的分式方程,解之经检验后即可得出B种防疫用品的成本,再将其代入(x+500)中即可求出A种防疫用品的成本;
(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,根据“该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出该工厂共有6种生产方案;
(3)设(2)中的生产成本为w元,利用生产成本=A种防疫用品的成本×生产数量+B种防疫用品的成本×生产数量,即可得出关于w关于m的函数关系式,利用一次函数的性质即可求出(2)中最低成本,设购买a台甲种设备,b台乙种设备,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数,即可得出各购买方案,再将其代入a+b中即可得出结论.
【解答】解:(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,
依题意得:=,
解得:x=1500,
经检验,x=1500是原方程的解,且符合题意,
∴x+500=1500+500=2000.
答:A种防疫用品的成本为2000元/箱,B种防疫用品的成本为1500元/箱.
(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,
依题意得:,
解得:20≤m≤25.
又∵m为整数,
∴m可以为20,21,22,23,24,25,
∴该工厂共有6种生产方案.
(3)设(2)中的生产成本为w元,则w=2000(50﹣m)+1500m=﹣500m+100000,
∵﹣500<0,
∴w随m的增大而减小,
∴当m=25时,w取得最小值,最小值=﹣500×25+100000=87500.
设购买a台甲种设备,b台乙种设备,
依题意得:2500a+3500b=87500,
∴a=35﹣b.
又∵a,b均为正整数,
∴或或或,
∴a+b=33或31或29或27.
∵33>31>29>27,
∴共有4种购买方案,最多可购买甲,乙两种设备共33台.
【点评】本题考查了分式方程的应用、一元一次不等式的应用、一次函数的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)找准等量关系,正确列出二元一次方程.
16.(2023 湘西州)2023年“地摊经济”成为社会关注的热门话题,“地摊经济”有着启动资金少、管理成本低等优点,特别是在受到疫情冲击后的经济恢复期,“地摊经济”更是成为许多创业者的首选,甲经营了某种品牌小电器生意,采购2台A种品牌小电器和3台B种品牌小电器,共需要90元;采购3台A种品牌小电器和1台B种品牌小电器,共需要65元.销售一台A种品牌小电器获利3元,销售一台B种品牌小电器获利4元.
(1)求购买1台A种品牌小电器和1台B种品牌小电器各需要多少元?
(2)甲用不小于2750元,但不超过2850元的资金一次性购进A、B两种品牌小电器共150台,求购进A种品牌小电器数量的取值范围.
(3)在(2)的条件下,所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,请说明甲合理的采购方案有哪些?并计算哪种采购方案获得的利润最大,最大利润是多少?
【分析】(1)列方程组即可求出两种风扇的进价,
(2)列一元一次不等式组求出取值范围即可,
(3)再求出利润和自变量之间的函数关系式,根据函数的增减性确定当自变量为何值时,利润最大,由关系式求出最大利润.
【解答】解:(1)设A、B型品牌小电器每台的进价分别为x元、y元,根据题意得:
,
解得:,
答:A、B型品牌小电器每台进价分别为15元、20元.
(2)设购进A型品牌小电器a台,
由题意得:,
解得30≤a≤50,
答:购进A种品牌小电器数量的取值范围30≤a≤50.
(3)设获利为w元,由题意得:w=3a+4(150﹣a)=﹣a+600,
∵所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,
∴﹣a+600≥565,
解得:a≤35,
∴30≤a≤35,
∵w随a的增大而减小,
∴当a=30台时获利最大,w最大=﹣30+600=570元,
答:A型30台,B型120台,最大利润是570元.
【点评】本题考查二元一次方程组的应用、一元一次不等式组解法和应用以及一次函数的图象和性质等知识,搞清这些知识之间的相互联系是解决问题的前提和必要条件.
易错点1:运用等式性质时,两边同除以一个数必须要注意不能为0的情况.
1.(2022 青海)根据等式的性质,下列各式变形正确的是( )
A.若=,则a=b B.若ac=bc,则a=b
C.若a2=b2,则a=b D.若﹣x=6,则x=﹣2
【分析】根据等式的性质,进行计算逐一判断即可解答.
【解答】解:A、若=,则a=b,故A符合题意;
B、若ac=bc(c≠0),则a=b,故B不符合题意;
C、若a2=b2,则a=±b,故C不符合题意;
D、﹣x=6,则x=﹣18,故D不符合题意;
故选:A.
【点评】本题考查了等式的性质,熟练掌握等式的性质是解题的关键.
易错点2:一元一次方程的解以及解方程:计算思路要清晰、计算要准确,否则很容易失分。
2.(2003 绵阳)当a=0时,方程ax+b=0(其中x是未知数,b是已知数)( )
A.有且只有一个解 B.无解
C.有无限多个解 D.无解或有无限多个解
【分析】分两种情况进行讨论(1)当a=0,b=0时;(2)当a=0,而b≠0.
【解答】解:当a=0,b=0时,方程有无限多个解;
当a=0,而b≠0时,方程无解.
故选:D.
【点评】本题考查了一元一次方程的解的情况,要分情况讨论在判断.
易错点3:解二元一次方程:注意题目给出的条件,充分利用条件进行解答。
3.(2023 无锡)下列4组数中,不是二元一次方程2x+y=4的解的是( )
A. B. C. D.
【分析】二元一次方程2x+y=10的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.
【解答】解:A、把x=1,y=2代入方程,左边=2+2=右边,所以是方程的解;
B、把x=2,y=0代入方程,左边=右边=4,所以是方程的解;
C、把x=0.5,y=3代入方程,左边=4=右边,所以是方程的解;
D、把x=﹣2,y=4代入方程,左边=0≠右边,所以不是方程的解.
故选:D.
【点评】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.
易错点4:一元二次方程中相关字母的取值范围的题目易忽视二次项系数不为0。解这类问题一定要掌握一元二次方程的定义,注意特殊字母的取值范围:
4.(2023 桐柏县一模)关于x的方程(m+1)x|m|+1﹣mx+6=0是一元二次方程,则m的值是( )
A.﹣1 B.3 C.1 D.1或﹣1
【分析】根据一元二次方程的定义,即可求解.
【解答】解:∵关于x的方程(m+1)x|m|+1﹣mx+6=0是一元二次方程,
∴|m|+1=2且m+1≠0,
解得m=1.
故选:C.
【点评】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.
易错点5:一元二次方程的解:灵活运用求解的几种方法,另外,结合整体代入法进行考查时也是是一个特别容易出错的点,需特别留意。
5.(2023 枣庄)若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为 __2019__.
【分析】把x=3代入方程求出3a﹣b的值,代入原式计算即可求出值.
【解答】解:把x=3代入方程得:9a﹣3b=6,即3a﹣b=2,
则原式=2023﹣2(3a﹣b)=2023﹣4=2019.
故答案为:2019.
【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
6.(2023 娄底)若m是方程x2﹣2x﹣1=0的根,则m2+=__6__.
【分析】把m代入x2﹣2x﹣1=0得到m2﹣2m﹣1=0,即m2﹣1=2m,把m2﹣1=2m代入变形后的式子计算即可.
【解答】解:∵m是方程x2﹣2x﹣1=0的根,
∴m2﹣2m﹣1=0,即m2﹣1=2m,
∴m2+
=(m﹣)2+2
=()2+2
=22+2
=6.
故答案为:6.
【点评】本题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了代数式求值,本题代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式m2﹣1=2m的值,然后利用“整体代入法”求代数式的值.
易错点6:解分式方程时首要步骤去分母,分数线相当于括号,易忘记根检验,导致运算结果出错。另外注意方程无解时,相关字母可能会出现多个解,容易遗漏:
7.(2023 山西)解方程:.
【分析】由题意,根据分式方程的解题步骤先找出最简公分母,化为整式方程,解方程后检验即可得结果.
【解答】解:由题意得最简公分母为2(x﹣1),
∴原方程可化为:
2+2x﹣2=3.
∴x=.
检验:把x=代入2(x﹣1)=1≠0,且原方程左边=右边.
∴原方程的解为x=.
【点评】本题主要考查了分式方程的解法,解题时要能找准最简公分母进行变形化为整式方程是关键,同时注意检验.
8.(2023 陕西)解方程:.
【分析】利用解分式方程的步骤解方程即可.
【解答】解:原方程两边同乘x(x+5)去分母得:2x2﹣x(x+5)=(x+5)2,
去括号得:2x2﹣x2﹣5x=x2+10x+25,
移项,合并同类项得:﹣15x=25,
解得:x=﹣,
经检验,x=﹣是分式方程的解,
故原方程的解为:x=﹣.
【点评】本题考查解分式方程,熟练掌握解方程的方法是解题的关键.
9.(2023 西藏)解分式方程:.
【分析】利用解分式方程的步骤解方程即可.
【解答】解:原方程两边同乘(x+1)(x﹣1),去分母得:x(x﹣1)﹣(x+1)(x﹣1)=3(x+1),
去括号得:x2﹣x﹣x2+1=3x+3,
移项,合并同类项得:﹣4x=2,
系数化为1得:x=﹣,
检验:将x=﹣代入(x+1)(x﹣1)得:×(﹣)=﹣≠0,
故原分式方程的解为:x=﹣.
【点评】本题考查解分式方程,熟练掌握解方程的方法是解题的关键.
10.(2023 广西)解分式方程:.
【分析】将分式方程两边同乘x(x﹣1)转化为一元一次方程即可得出结论.
【解答】解:,
方程两边同乘x(x﹣1)得:2x=x﹣1,
移项解得:x=﹣1.
将x=﹣1代入x(x﹣1)≠0,
∴x=﹣1是原分式方程的解.
【点评】本题考查了分式方程的解法,其中确定最简公分母是解题关键.
11.(2022 眉山)解方程:=.
【分析】按照解分式方程的步骤,进行计算即可解答.
【解答】解:=,
方程两边同乘(x﹣1)(2x+1)得:
2x+1=3(x﹣1),
解这个整式方程得:
x=4,
检验:当x=4时,(x﹣1)(2x+1)≠0,
∴x=4是原方程的解.
【点评】本题考查了解分式方程,熟记解分式方程的步骤是解题的关键,需要特别注意解分式方程需要检验.
12.(2022 青海)解方程:﹣1=.
【分析】按照解分式方程的步骤,进行计算即可解答.
【解答】解:﹣1=,
﹣1=,
x(x﹣2)﹣(x﹣2)2=4,
解得:x=4,
检验:当x=4时,(x﹣2)2≠0,
∴x=4是原方程的根.
【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.
13.(2022 玉林)解方程:=.
【分析】根据解分式方程的一般步骤解出方程,检验,即可得到答案.
【解答】解:方程两边同乘2(x﹣1),得2x=x﹣1,
解得:x=﹣1,
检验,当x=﹣1时,2(x﹣1)=﹣4≠0,
所以原分式方程的解为x=﹣1.
【点评】本题考查的是解分式方程,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,注意解分式方程时,一定要检验.
易错点7:运用不等式的性质3时,容易忘记改变不等号的方向而导致结果出错。注意结合不等号两边的正负性灵活转变不等号的方向。不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。:
14.(2022 宿迁)如果x<y,那么下列不等式正确的是( )
A.x﹣1>y﹣1 B.x+1>y+1 C.﹣2x<﹣2y D.2x<2y
【分析】根据不等式的性质进行分析判断.
【解答】解:A、在不等式x<y的两边同时减去1,不等号的方向不变,即x﹣1<y﹣1,不符合题意;
B、在不等式x<y的两边同时加上1,不等号的方向不变,即x+1<y+1,不符合题意;
C、在不等式x<y的两边同时乘﹣2,不等号法方向改变,即﹣2x>﹣2y,不符合题意;
D、在不等式x<y的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.
故选:D.
【点评】本题主要考查了不等式的性质.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.据此逐一判断即可.
易错点8:关于一元一次不等式组有解、无解的条件易忽视相等的情况。解不等式过程中,容易忽视整数解的正确选择,需要考虑到解题步骤中要满足每个步骤及相关条件:
15.(2022 内蒙古)关于x的不等式组无解,则a的取值范围是 __a≥2__.
【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.
【解答】解:,
由①得:x≤2,
由②得:x>a,
∵不等式组无解,
∴a≥2,
故答案为:a≥2.
【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小解没了.
16.(2022 黑龙江)若关于x的一元一次不等式组的解集为x<2,则a的取值范围是 __a≥2__.
【分析】不等式组整理后,根据已知解集,利用同小取小法则判断即可确定出a的范围.
【解答】解:不等式组整理得:,
∵不等式组的解集为x<2,
∴a≥2.
故答案为:a≥2.
【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.
易错点9:不等式(组)的解的问题要先确定解集,注意包含与不包含,以及对正整数,整数,非负整数等关键词理解要透彻,容易概念混乱。确定解集的方法运用数轴。:
17.(2023 陕西)解不等式组:.
【分析】解各不等式后求的它们解集的公共部分即可.
【解答】解:解第一个不等式可得x<5,
解第二个不等式可得x<2,
故原不等式组的解集为:x<2.
【点评】本题考查解一元一次不等式组,熟练掌握解不等式组的方法是解题的关键.
18.(2023 福建)解不等式组:.
【分析】先求出每个不等式的解集,再根据“大小小大取中间”原则求出不等式组的解集即可.
【解答】解:解不等式①,得x<1.
解不等式②,得x≥﹣3.
所以原不等式组的解集为﹣3≤x<1.
【点评】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.
19.(2023 常州)解不等式组,把解集在数轴上表示出来,并写出整数解.
【分析】先求出不等式组的解集,再求出不等式组的整数解即可.
【解答】解:,
解不等式①得,x≤2,
解不等式②得,x>﹣1,
∴不等式组的解集是﹣1<x≤2,
在数轴上表示为
,
∴不等式组的整数解是:0,1,2.
【点评】本题考查了解一元一次不等式(组)的应用,关键是能求出不等式组的解集.
20.(2023 济南)解不等式组:,并写出它的所有整数解.
【分析】分别解不等式①和②,找出其解集的公共部分,可得到不等式组的解集,再找出其整数解即可.
【解答】解:解不等式①,得x>﹣1,
解不等式②,得x<3,
在数轴上表示不等式①②的解集如下:
∴原不等式组的解集是﹣1<x<3,
∴它的所有整数解有:0,1,2.
【点评】本题考查一元一次不等式组的整数解,正确解不等式组并在数轴上表示解集是解题的关键.
21.(2022 淮安)解不等式组:并写出它的正整数解.
【分析】解不等式组求出它的解集,再取正整数解即可.
【解答】解:解不等式2(x﹣1)≥﹣4得x≥﹣1.
解不等式<x﹣1得x<4,
∴不等式组的解集为:﹣1≤x<4.
∴不等式组的正整数解为:1,2,3.
【点评】本题主要考查了一元一次不等式组的解法和一元一次不等式组的正整数解,利用一元一次不等式组的解法正确求得不等式组的解集是解题的关键.
22.(2022 扬州)解不等式组并求出它的所有整数解的和.
【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.
【解答】解:,
解不等式①,得:x≥﹣2,
解不等式②,得:x<4,
∴原不等式组的解集是﹣2≤x<4,
∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,
∵﹣2+(﹣1)+0+1+2+3=3,
∴该不等式组所有整数解的和是3.
【点评】本题考查一元一次不等式组的整数解、解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.
23.(2022 西宁)解不等式组:,并写出该不等式组的最大整数解.
【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
【解答】解:,
解不等式①得:x≤1,
解不等式②得:x<﹣2,
∴不等式组的解集是x<﹣2,
∴该不等式组的最大整数解为﹣3.
【点评】本题考查了解一元一次不等式(组),不等式组的整数解的应用,解此题的关键是求出不等式组的解集.
易错点10:方程与不等式应用于实际问题时应注意:(1)单位要统一;(2)找等量关系必须准确;(3)列方程组时要避免出现0=0的情况。在一元二次方程中容易忽略多个解
24.(2023 怀化)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.
(1)求原计划租用A种客车多少辆?这次研学去了多少人?
(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?
(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?
【分析】(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据这次去研学的人数不变,可得出关于x的一元一次方程,解之即可得出结论;
(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据“租用的25辆客车可乘坐人数不少于1200人,且租用的B种客车不超过7辆”,可得出关于y的一元一次不等式组,解之可得出y的取值范围,再结合y为正整数,即可得出各租车方案;
(3)利用总租金=每辆A种客车的租金×租用A种客车的辆数+每辆B种客车的租金×租用B种客车的辆数,可分别求出选择各方案所需总租金,比较后,即可得出结论.
【解答】解:(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,
根据题意得:45x+30=60(x﹣6),
解得:x=26,
∴45x+30=45×26+30=1200.
答:原计划租用A种客车26辆,这次研学去了1200人;
(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,
根据题意得:,
解得:5≤y≤7,
又∵y为正整数,
∴y可以为5,6,7,
∴该学校共有3种租车方案,
方案1:租用5辆B种客车,20辆A种客车;
方案2:租用6辆B种客车,19辆A种客车;
方案3:租用7辆B种客车,18辆A种客车;
(3)选择方案1的总租金为300×5+220×20=5900(元);
选择方案2的总租金为300×6+220×19=5980(元);
选择方案3的总租金为300×7+220×18=6060(元).
∵5900<5980<6060,
∴租用5辆B种客车,20辆A种客车最合算.
【点评】本题考查了一元一次不等式组的应用、一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次方程,(3)根据各数量之间的关系,求出选择各方案所需总租金.
25.(2022 遂宁)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元;
(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?
【分析】(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;
(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.
【解答】解:(1)设篮球的单价为a元,足球的单价为b元,
由题意可得:,
解得,
答:篮球的单价为120元,足球的单价为90元;
(2)设采购篮球x个,则采购足球为(50﹣x)个,
∵要求篮球不少于30个,且总费用不超过5500元,
∴,
解得30≤x≤33,
∵x为整数,
∴x的值可为30,31,32,33,
∴共有四种购买方案,
方案一:采购篮球30个,采购足球20个;
方案二:采购篮球31个,采购足球19个;
方案三:采购篮球32个,采购足球18个;
方案四:采购篮球33个,采购足球17个.
【点评】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.
26.(2023 淮安)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD(如图),生态园一面靠墙(墙足够长),另外三面用18m的篱笆围成.生态园的面积能否为40m2?如果能,请求出AB的长;如果不能,请说明理由.
【分析】设AB的长度为x m,则BC的长度为m,由“生态园一面靠墙(墙足够长),另外三面用18m的篱笆围成,生态园的面积为40m2”,列出一元二次方程,解方程即可.
【解答】解:生态园的面积能为40m2,理由如下:
∵四边形ABCD是矩形,
∴AB=CD,AD=BC,
设AB的长度为x m,则BC的长度为m,
由题意得:x =40,
整理得:x2﹣18x+80=0,
解得:x1=10,x2=8,
∴生态园的面积能为40m2,AB的长为10m或8m.
【点评】本题考查了一元二次方程的应用、矩形的性质等知识,找准等量关系,列出一元二次方程是解题的关键.
27.(2023 郴州)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
【分析】(1)设这两个月中该景区游客人数的月平均增长率为x,由2月份游客人数为1.6万人,4月份游客人数为2.5万人,列出方程可求解;
(2)设5月份后10天日均接待游客人数是a万人,由增长率不会超过前两个月的月平均增长率,列出不等式,即可求解.
【解答】解:(1)设这两个月中该景区游客人数的月平均增长率为x,
由题意可得:1.6(1+x)2=2.5,
解得:x=25%,x=﹣(不合题意舍去),
答:这两个月中该景区游客人数的月平均增长率为25%;
(2)设5月份后10天日均接待游客人数是a万人,
由题意可得:2.125+10a≤2.5(1+25%),
解得:a≤0.1,
答:5月份后10天日均接待游客人数最多是0.1万人.
【点评】本题考查了一元二次方程的应用,一元一次不等式的应用,找到正确的数量关系是解题的关键.
28.(2022 眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
【分析】(1)设该市改造老旧小区投入资金的年平均增长率为x,利用2021年投入资金金额=2019年投入资金金额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设该市在2022年可以改造y个老旧小区,根据2022年改造老旧小区所需资金不多于2022年投入资金金额,即可得出关于y的一元一次不等式,解之取其中的最大整数值即可得出结论.
【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,
依题意得:1000(1+x)2=1440,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市改造老旧小区投入资金的年平均增长率为20%.
(2)设该市在2022年可以改造y个老旧小区,
依题意得:80×(1+15%)y≤1440×(1+20%),
解得:y≤,
又∵y为整数,
∴y的最大值为18.
答:该市在2022年最多可以改造18个老旧小区.
【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
29.(2022 毕节市)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)
类别价格 A款钥匙扣 B款钥匙扣
进货价(元/件) 30 25
销售价(元/件) 45 37
(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
【分析】(1)设购进A款钥匙扣x件,B款钥匙扣y件,利用总价=单价×数量,结合该网店第一次用850元购进A、B两款钥匙扣共30件,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,利用总价=单价×数量,结合总价不超过2200元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题;
(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出(78﹣2a)件,利用平均每天销售B款钥匙扣获得的总利润=每件的销售利润×平均每天的销售量,即可得出关于a的一元二次方程,解之即可得出结论.
【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,
依题意得:,
解得:.
答:购进A款钥匙扣20件,B款钥匙扣10件.
(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,
依题意得:30m+25(80﹣m)≤2200,
解得:m≤40.
设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.
∵3>0,
∴w随m的增大而增大,
∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.
答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.
(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,
依题意得:(a﹣25)(78﹣2a)=90,
整理得:a2﹣64a+1020=0,
解得:a1=30,a2=34.
答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.
【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用、一元二次方程的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式;(3)找准等量关系,正确列出一元二次方程.
一.一元一次方程的解(共1小题)
1.(2023 永州)关于x的一元一次方程2x+m=5的解为x=1,则m的值为( )
A.3 B.﹣3 C.7 D.﹣7
【分析】根据方程的解的定义把x=1代入方程即可求出m的值.
【解答】解:∵x=1是关于x的一元一次方程2x+m=5的解,
∴2×1+m=5,
∴m=3,
故选:A.
【点评】本题主要考查了一元一次方程的解的定义,熟知:使方程左右两边相等的未知数的值是方程的解.
二.解一元一次方程(共1小题)
2.(2023 海南)若代数式x+2的值为7,则x等于( )
A.9 B.﹣9 C.5 D.﹣5
【分析】根据题意列出方程,求出方程的解即可得到x的值.
【解答】解:根据题意得:x+2=7,
解得:x=5.
故选:C.
【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.
三.由实际问题抽象出一元一次方程(共1小题)
3.(2023 成都)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,则可列方程为( )
A.(x+4.5)=x﹣1 B.(x+4.5)=x+1
C.(x+1)=x﹣4.5 D.(x﹣1)=x+4.5
【分析】设木长x尺,根据题意列出方程解答即可.
【解答】解:设木长x尺,根据题意可得:
,
故选:A.
【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题的关键.
四.一元一次方程的应用(共5小题)
4.(2023 台湾)有一东西向的直线吊桥横跨溪谷,小维、阿良分别从西桥头、东桥头同时开始往吊桥的另一头笔直地走过去,如图所示,已知小维从西桥头走了84步,阿良从东桥头走了60步时,两人在吊桥上的某点交会,且交会之后阿良再走70步恰好走到西桥头,若小维每步的距离相等,阿良每步的距离相等,则交会之后小维再走多少步会恰好走到东桥头( )
A.46 B.50 C.60 D.72
【分析】设交会之后小维再走x步会恰好走到东桥头,由题意得出,则可得出答案.
【解答】解:设交会之后小维再走x步会恰好走到东桥头,由题意得,
,
∴x=72,
故选:D.
【点评】本题考查了一元一次方程的应用,有理数的运算,正确理解题意是解题的关键.
5.(2023 德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=__39__.
【分析】设九宫格中最中间的数为x,由于第1列中间数与第2行的最左侧的数重合,建立方程16+4=7+x,求得x,根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和等于最中间数的三倍所以m=3x.
【解答】解:设九宫格中最中间的数为x,
∵第1列中间数与第2行的最左侧的数重合,
∴16+4=7+x,
∴x=13,
根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和等于最中间数的三倍,
∴m=3x=39,
故答案为:39.
【点评】本题考查了九宫格的知识,根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和相等的规律,观察九宫格中数的排列特征建立方程是解决问题的关键.
6.(2023 河北)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:
投中位置 A区 B区 脱靶
一次计分(分) 3 1 ﹣2
在第一局中,珍珍投中A区4次,B区2次.脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
【分析】(1)根据题意列出算式可求解;
(2)由题意列出方程可求解.
【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),
答:珍珍第一局的得分为6分;
(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,
解得:k=6.
∴k的值为6.
【点评】本题考查了一元一次方程的应用,找到正确的数量关系是解题的关键.
7.(2023 临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金.当她