中小学教育资源及组卷应用平台
第十一章一元一次不等式组单元测试苏科版2024—2025学年七年级下册
总分:120分 时间:90分钟
姓名:________ 班级:_____________成绩:___________
一.单项选择题(每小题5分,满分40分)
题号 1 3 4 5 6 7 8
答案
1.若m>n,则下列结论正确的是( )
A.m+2<n+2 B.m﹣2<n﹣2 C.2m>2n D.﹣2m>﹣2n
2.南昌市春季某日的最高气温是22℃,最低气温是12℃,则南昌当日气温t(℃)的变化范围是( )
A.t≤22 B.t≥12 C.12<t<22 D.12≤t≤22
3.若(m+1)x|m|+2>0是关于x的一元一次不等式,则该不等式的解集为( )
A.x=0 B.x<﹣3 C.x>﹣1 D.x<﹣1
4.关于x、y的方程组的解中x﹣y≥5,则k的取值范围为( )
A.k≥3 B.k≤3 C.k≥8 D.k≥9
5.已知关于x的不等式(1+2a)x>1的解集为,则a的取值范围是( )
A. B. C. D.
6.不等式7x﹣12>4x﹣5的最小整数解为( )
A.0 B.1 C.2 D.3
7.把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生( )
A.11人 B.12人 C.11或12人 D.13人
8.若不等式组无解,则k的取值范围为( )
A.k>2 B.k≥2 C.k<﹣2 D.k≤﹣2
二.填空题(每小题5分,满分20分)
9.不等式组的解集为 .
10.关于x的不等式2x+a≤1只有3个正整数解,则a的取值范围为 .
11.已知关于x的不等式ax+b>2(a﹣b)的解集为,则关于x的不等式bx+3a>b的解集为 .
12.已知不等式组的解集是﹣1<x<0,则(a+b)2024的值为 .
三.解答题(共6小题,每小题10分,每题须有必要的文字说明和解答过程)
13.解不等式组:.
14.某初中购买A、B两种徽章作为奖品.已知购买2个A种徽章和3个B种徽章需156元;购买4个A种徽章和5个B种徽章需284元.
(1)每个A种徽章与每个B种徽章的价格分别为多少元?
(2)学校计划购进A、B两种徽章共60个,已知购进的A种徽章数不少于B种徽章数的2倍,且总费用不超过2000元,那么购进A种徽章的个数是多少?
15.对于两个数a,b,我们定义:
①M(a,b)表示这两个数的平均数,例如;
②max(a,b)表示这两个数中更大的数,当a≥b时,max(a,b)=a;当a<b时,max(a,b)=b;例如:max(﹣1,3)=3.根据以上材料,解决下列问题:
(1)填空:M(2022,2024)= ,max(2023,2024)= ;
(2)已知max{﹣2x+5,﹣1}=﹣2x+5,求x的取值范围;
(3)已知,求x和y的值.
16.已知关于x、y的方程组的解是非负数.
(1)求k的取值范围;
(2)化简:|2k﹣1|+|k﹣2|.
17.已知(m+2)x|m+3|﹣1>2是关于x的一元一次不等式.
(1)求m的值.
(2)求出原一元一次不等式的解集.
18.【定义】若一元一次方程的解在一元一次不等式组的解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:2x+4=2的解为的解集为﹣3≤x<4,不难发现x=﹣1在﹣3≤x<4的范围内,所以2x+4=2是的“子方程”.
【问题解决】(1)在方程①4x﹣5=x+7,②,③2x+3(x+2)=21中,不等式组的“子方程”是 (填序号);
(2)者关于x的方程2x﹣k=4是不等式组的“子方程”,求k的取值范围;
(3)若方程4x+4=0是关于x的不等式组的“子方程”,直接写出m的取值范围.
参考答案
一、选择题
题号 1 2 3 4 5 6 7 8
答案 C D C C B D C B
二、填空题
9.【解答】解:,
解不等式①,得:x<6,
解不等式②,得:x≤2,
∴该不等式组的解集为x≤2,
故答案为:x≤2.
10.【解答】解:由2x+a≤1,得:x,因为不等式只有3个正整数解,
所以不等式的正整数解为1、2、3,
∴34,
解得﹣7<a≤﹣5,
故答案为:﹣7<a≤﹣5.
11.【解答】解:由ax+b>2(a﹣b),得ax>2a﹣3b,
∵关于x的不等式ax+b>2(a﹣b)的解集为,
∴a<0,且,
∴,
整理得:a=2b,
∵a<0,
∴b<0,
把a=2b代入bx+3a>b中,整理得:bx>﹣5b,
∴x<﹣5,
故答案为:x<﹣5.
12.【解答】解:由x﹣a>1得:x>a+1,
由x+1<b得:x<b﹣1,
∵解集为﹣1<x<0,
∴a+1=﹣1,b﹣1=0,
解得a=﹣2,b=1,
则原式=(﹣2+1)2024=(﹣1)2024=1,
故答案为:1.
三、解答题
13.【解答】解:由不等式2﹣3(x﹣1)≥2x得:x≤1,
由不等式x﹣1得:x<4,
∴原不等式组的解集为x≤1.
14.【解答】解:(1)设每个A种徽章的价格为x元,每个B种徽章的价格为y元,
由题意得:,
解得:,
答:每个A种价格为36元,每个B种价格分别为28元;
(2)设购进m个A种徽章,则:
,
∴,
∴m=40,
答:购进A种徽章的个数是40.
15.【解答】解:(1)由题意可得,
M(2022,2024)2023,max(2023,2024)=2024,
故答案为:2023,2024;
(2)∵max{﹣2x+5,﹣1}=﹣2x+5,
∴﹣2x+5≥﹣1,
∴x≤3;
(3)由题意得,
整理得,
①+②得:4x=4,
解得:x=1,
①﹣②得:2y=﹣2,
解得:y=﹣1.
16.【解答】解:(1),
①+②得:4x=8k﹣4,即x=2k﹣1③,
将③代入②得:y=﹣4k+4,
则原方程组的解为:;
∵原方程组的解均为非负数,
∴,
解得:.
(2)∵,
∴2k﹣1>0,k﹣2<0,
∴|2k﹣1|+|k﹣2|.
=2k﹣1+2﹣k
=k+1.
17.【解答】解:(1)根据题意|m+3|=1且m+2≠0,解得m+3=±1且m≠﹣2,
所以m=﹣4.
(2)原一元一次不等式为﹣2x﹣1>2,
移项得﹣2x>2+1,
合并同类项得﹣2x>3,
解得.
18.【解答】解:(1)解方程4x﹣5=x+7得:x=4,
解方程得:,
解方程2x+3(x+2)=21得:x=3,
解不等式组得:3<x≤5,
所以不等式组 的“子方程”是①②.
故答案为:①②;
(2)解不等式5x﹣7>11﹣x,得:x>3,
解不等式2x≥3x﹣6,得:x≤6,
则不等式组的解集为3<x≤6,
解方程2x﹣k=4,得,
由题意,得,
∴6<k+4≤12,
解得:2<k≤8;
(3)解方程4x+4=0,得:x=﹣1,
解不等式组得:,
∴不等式组得解集为,
∴x=﹣1在范围内,
∴,
解得:m≤6.
21世纪教育网(www.21cnjy.com)