北师大版八下课时练习§3.4简单的图形设计(解析版+原题版)

文档属性

名称 北师大版八下课时练习§3.4简单的图形设计(解析版+原题版)
格式 zip
文件大小 3.8MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2025-03-04 10:25:10

文档简介

中小学教育资源及组卷应用平台
【北师大版八年级数学(下)课时练习】
§3.4简单的图形设计
一、选择题:(每小题3分共24分)
1.下列图案可以通过一个“基本图形”平移得到的是( )
A. B.C. D.
2.下列四张扑克牌中,属于中心对称图形的是 ( )
A.红桃7 B.方块4 C.梅花6 D.黑桃5
3.下图由正六边形与两条对角线所组成,添加一条对角线使图形是中心对称图形,添加方法有( )种.
A.1 B.2 C.3 D.4
4.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )
A.2种 B.3种 C.4种 D.5种
5.给出下列图形:(1)角;(2)直角三角形;(3)等腰三角形;(4)平行四边形;(5)圆.其中为中心对称图形的是( )
A.(4)(5) B.(2)(3)(5) C.(3)(4) D.(1)(3)(4)(5)
6.在由相同的小正方形组成的的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形的序号是( )
A.①或② B.③或④ C.⑤或⑥ D.①或⑨
7.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 ( )
A.2种 B.3种 C.4种 D.5种
8.等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,那么这个新的图形( )
A.是轴对称图形,但不是中心对称图形
B.是中心对称图形,但不是轴对称图形
C.既是轴对称图形,又是中心对称图形
D.既不是轴对称图形,又不是中心对称图形
二、填空题:(每小题3分共15分)
9.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和 等.
10.如图所示,其中的图(2)可以看作是由图(1)经过 次旋转,每次旋转 得到的.
11.“数学是思维的体操”,亲爱的同学们,请发挥你的超级想象力用两个圆、两个三角形、两条平行线段为构件,尽可能多地构思出独特且有意义的图形,并写出一两句贴切、诙谐的解说词.例如:下面左图解说词:秃子打伞无法无天.
解说词: .
12.如图,四边形ABCD中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD的面积是24cm2.则AC长是 cm.
13.如图,请画出一个图形经过两次轴对称变换之后得到的图形,其中图①中的两条对称轴是平行的,图②中的两条对称轴是垂直的.仔细观察上面的两个图形经过两次轴对称变换之后得到的图形.图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的 变换得到,图②中的图形还可以通过 变换得到.
三、解答题:(共61分)
14.(6分)如图②是4×4网格,每个小正方形的边长都为1,请用图案①作为基本图案,通过平移,轴对称,旋转变换,设计两个不同的精美图案,使它们满足:①既是轴对称图形,又是中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.
15.(7分)在日常生产生活中,我们常会见到一些由旋转形成的美丽的图案.观察下列的两幅图(图(1)和图(2)),你能说出他们是由什么基本图形绕中心旋转180°设计出来的吗?

16.(8分)认真观察图中阴影部分构成的图案,回答下列问题:
(1)请写出这四个图案都具有的两个共同特征:________、________;
(2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.
17.(9分)七巧板又称智慧板,是中国民间流传的智力玩具,它是由七块板组成(如图1),用这七块板可拼出许多图形(1600种以上),例如:三角形、平行四边形、以及不规则的多边形,它还可以拼出各种人物、动物、建筑等.请你用七巧板中标号为①②③的三块板(如图2经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方块顶点上):
(1)拼成长方形,在图3中画出示意图;
(2)拼成等腰直角三角形,在图4中面出示意图.
18.(9分)如图,在8×8的正方形网格中,有十二棵小树,请你把这个大正方形划分成四块,要求每块的形状、大小都相同,并且每块中恰好有三棵小树,你能行吗
19.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M也在格点上.
(1)画出关于直线OM对称的;
(2)画出绕点O按顺时针方向旋转90°后所得的;
(3) 计算:的面积为 ;
(4) (填“>”,“=”或“<”)
20.(12分)阅读与探究
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:
在我们所学过的特殊四边形中,是勾股四边形的是________ (任写一种即可);
图1、图2均为的正方形网格,点均在格点上,请在图中标出格点,连接,使得四边形符合下列要求:图1中的四边形是勾股四边形,并且是轴对称图形;图2中的四边形是勾股四边形且对角线相等,但不是轴对称图形.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
【北师大版八年级数学(下)课时练习】
§3.4简单的图形设计
一、选择题:(每小题3分共24分)
1.下列图案可以通过一个“基本图形”平移得到的是( )
A. B.C. D.
解:因为图形的变换有:旋转变换,平移变换,轴对称变换,所以根据它们的概念可知:A、是由一个“基本图案”旋转得到,故本选项错误;B、是由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选B.
2.下列四张扑克牌中,属于中心对称图形的是 ( )
A.红桃7 B.方块4 C.梅花6 D.黑桃5
解A选项:红桃7不是中心对称的图形;
B选项:方块4是中心对称的图形;
C选项:梅花6不是中心对称的图形;
D选项:黑桃5不是中心对称的图形;
故选B.
3.下图由正六边形与两条对角线所组成,添加一条对角线使图形是中心对称图形,添加方法有( )种.
A.1 B.2 C.3 D.4
解:如图,根据题意,添加一条对角线使图形是中心对称图形的方法只有一种方法,

故选:A.
4.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )
A.2种 B.3种 C.4种 D.5种
解:如图,

有2种方法.
故选A.
5.给出下列图形:(1)角;(2)直角三角形;(3)等腰三角形;(4)平行四边形;(5)圆.其中为中心对称图形的是( )
A.(4)(5) B.(2)(3)(5) C.(3)(4) D.(1)(3)(4)(5)
解:角不是中心对称图形,故(1)不是中心对称图形;
直角三角形不一定是中心对称图形,故(2)不一定是中心对称图形;
等腰三角形不一定是中心对称图形,故(3)不一定是中心对称图形;
平行四边形是中心对称图形,故(4)是中心对称图形;
圆是中心对称图形,故(5)是中心对称图形.
故是中心对称图形的是(4)(5).
故选A.
6.在由相同的小正方形组成的的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形的序号是( )
A.①或② B.③或④ C.⑤或⑥ D.①或⑨
【答案】D
7.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 ( )
A.2种 B.3种 C.4种 D.5种
解:如图所示:组成的图形是轴对称图形,又是中心对称图形,
则这个格点正方形的作法共有4种.
故选C.
8.等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,那么这个新的图形( )
A.是轴对称图形,但不是中心对称图形
B.是中心对称图形,但不是轴对称图形
C.既是轴对称图形,又是中心对称图形
D.既不是轴对称图形,又不是中心对称图形
解:根据轴对称图形与中心对称图形的概念求解.
等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,
沿着一条直线对折后两部分完全重合,故是轴对称图形;
找不到一点把图形绕该点旋转180度,旋转后的图形能和原图形完全重合,故不是中心对称图形.
故选A.
二、填空题:(每小题3分共15分)
9.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和 等.
解:几何变换包括:平移、轴对称、旋转.
故答案为旋转.
10.如图所示,其中的图(2)可以看作是由图(1)经过 次旋转,每次旋转 得到的.
解:由6个图形组成,所以360°÷6=60°,故可以看成由一个图形经过5次旋转得到的,每次分别旋转了60°.故答案为5,60°.
11.“数学是思维的体操”,亲爱的同学们,请发挥你的超级想象力用两个圆、两个三角形、两条平行线段为构件,尽可能多地构思出独特且有意义的图形,并写出一两句贴切、诙谐的解说词.例如:下面左图解说词:秃子打伞无法无天.
解说词: .
解:如图所示:
解说词:别怕,我与你在一起!
12.如图,四边形ABCD中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD的面积是24cm2.则AC长是 cm.
解:过A作AE⊥BC,作AF⊥CD,交CD的延长线于点F
∵∠AEC=∠AFC=∠ECF=90°,
∴四边形AECF为矩形,
∴∠EAF=90°,
∵∠BAD=90°,
∴∠BAE+∠EAD=∠FAD+∠EAD=90°,
∴∠DAF=∠BAE,
在△ABE和△ADF中,
∴△ABE≌△ADF(AAS),
∴AE=AF,S△ABE=S△ADF,
∴四边形AECF是正方形,
∴S四边形ABCD=S正方形AECF=24cm2,
∴AE=2cm,
∵△AEC为等腰直角三角形,
∴AC=AE=4cm.
故答案为:4.
13.如图,请画出一个图形经过两次轴对称变换之后得到的图形,其中图①中的两条对称轴是平行的,图②中的两条对称轴是垂直的.仔细观察上面的两个图形经过两次轴对称变换之后得到的图形.图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的 变换得到,图②中的图形还可以通过 变换得到.
解:如图:

图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的 平移变换得到,图②中的图形还可以通过 旋转变换得到,
故答案为平移,旋转.
三、解答题:(共61分)
14.(6分)如图②是4×4网格,每个小正方形的边长都为1,请用图案①作为基本图案,通过平移,轴对称,旋转变换,设计两个不同的精美图案,使它们满足:①既是轴对称图形,又是中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.
解:如图所示.
15.(7分)在日常生产生活中,我们常会见到一些由旋转形成的美丽的图案.观察下列的两幅图(图(1)和图(2)),你能说出他们是由什么基本图形绕中心旋转180°设计出来的吗?

解:图(1)和图(2)可分别看成是由基本图形(3)和基本图形(4)绕中心旋旋转180°得到的.

16.(8分)认真观察图中阴影部分构成的图案,回答下列问题:
(1)请写出这四个图案都具有的两个共同特征:________、________;
(2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.
解(1)特征1:都是轴对称图形;
特征2:都是中心对称图形;
故答案为:是轴对称图形;是中心对称图形;
(2)满足条件的图案有很多,这里画三个,三个都具有上述特征,如图所示:
17.(9分)七巧板又称智慧板,是中国民间流传的智力玩具,它是由七块板组成(如图1),用这七块板可拼出许多图形(1600种以上),例如:三角形、平行四边形、以及不规则的多边形,它还可以拼出各种人物、动物、建筑等.请你用七巧板中标号为①②③的三块板(如图2经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方块顶点上):
(1)拼成长方形,在图3中画出示意图;
(2)拼成等腰直角三角形,在图4中面出示意图.
解(1)如图3所示:长方形即为所求;
(2)如图4所示:等腰直角三角形即为所求.
18.(9分)如图,在8×8的正方形网格中,有十二棵小树,请你把这个大正方形划分成四块,要求每块的形状、大小都相同,并且每块中恰好有三棵小树,你能行吗
解:如图所示.(答案不唯一)
19.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M也在格点上.
(1)画出关于直线OM对称的;
(2)画出绕点O按顺时针方向旋转90°后所得的;
(3) 计算:的面积为 ;
(4) (填“>”,“=”或“<”)
解(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)△A1B1C1的面积为:2×2-×1×2-×1×2-×1×1=;
故答案为:;
(4)如图所示,


∴;
故答案为:>.
20.(12分)阅读与探究
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:
在我们所学过的特殊四边形中,是勾股四边形的是________ (任写一种即可);
图1、图2均为的正方形网格,点均在格点上,请在图中标出格点,连接,使得四边形符合下列要求:图1中的四边形是勾股四边形,并且是轴对称图形;图2中的四边形是勾股四边形且对角线相等,但不是轴对称图形.
解(1)矩形,正方形(任写一种即可);
(2)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)