2.4二次函数的应用同步练习北师大版2024—2025学年九年级下册
一、利用二次函数解决销售利润最大问题
1.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )
A.y=300﹣10x
B.y=300(60﹣40﹣x)
C.y=(300+10x)(60﹣40﹣x)
D.y=(300﹣10x)(60﹣40+x)
2.某商场以每件80元的价格购进一种商品,在一段时间内,销售量y(单位:件)与销售单价x(单位:元/件)之间是一次函数关系,其部分图象如图所示.
(1)求这段时间内y与x之间的函数解析式;
(2)在这段时间内,若销售单价不低于100元,且商场还要完成不少于220件的销售任务,当销售单价为多少时,商场获得利润最大?最大利润是多少?
3.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”.康宁公司新研发了一批便携式轮椅,计划在该月销售.根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元.设每辆轮椅降价x元,每天的销售利润为y元.
(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?
(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
4.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额y1(万元)与销售量x(吨)的函数解析式为:y1=5x;成本y2(万元)与销售量x(吨)的函数图象是如图所示的抛物线的一部分,其中是其顶点.
(1)求出成本y2关于销售量x的函数解析式;
(2)当成本最低时,销售产品所获利润是多少?
(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?
(注:利润=销售额﹣成本)
5.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.
销售单价x/元 … 12 14 16 18 20 …
销售量y/盒 … 56 52 48 44 40 …
(1)求y与x的函数表达式;
(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?
(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.
6.春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y(单位:张)与售价x(单位:元/张)之间满足一次函数关系(30≤x≤80,且x是整数),部分数据如下表所示:
电影票售价x(元/张) 40 50
售出电影票数量y(张) 164 124
(1)请求出y与x之间的函数关系式;
(2)设该影院每天的利润(利润=票房收入﹣运营成本)为w(单位:元),求w与x之间的函数关系式;
(3)该影院将电影票售价x定为多少时,每天获利最大?最大利润是多少?
7.端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.
(1)求猪肉粽每盒、豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(52≤x≤70),y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.
8.2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.
(1)求A类特产和B类特产每件的售价各是多少元?
(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.
(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价﹣进价)
9.某村为了提高广大农户的生活水平,经过市场调查,决定推广种植某特色水果.该水果每千克成本为20元,每千克售价需超过成本,但不高于50元,某农户日销售量y(千克)与售价x(元/千克)之间存在一次函数关系,部分图象如图所示,设该水果的日销售利润为W元.
(1)分别求出y与x,W与x之间的函数解析式;
(2)该农户决定从每天的销售利润中拿出100元设立“救助基金”,以帮助其他邻居共同致富,若捐款后该农户的剩余利润是900元,求此时水果的售价;
(3)若该水果的日销量不低于90千克,当售价单价定为多少元时,每天获取的利润最大,最大利润是多少元.
二、利用二次函数解决面积最大问题
1.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为( )
A.y=x(40﹣x) B.y=x(18﹣x)
C.y=x(40﹣2x) D.y=2x(40﹣2x)
2.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.
(1)设计一个使花园面积最大的方案,并求出其最大面积;
(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?
3.为了打造校园特色文化,做“高山上的一株黄连”,某中学预搭建黄连园,决定用栅栏围成一个一面靠墙(墙足够长)的矩形黄连园(如图所示),栅栏在安装过程中的接口损耗忽略不计,园子里准备种植味连和雅连两种黄连,学校已定购栅栏80米.
(1)请你帮学校设计一个使黄连园面积最大的方案,并求出其最大面积;
(2)在黄连园面积最大的条件下,每平方米可种植90株味连或雅连幼苗,味连幼苗每株售价为0.1元,雅连幼苗每株售价为0.15元,学校计划购买费用不超过9600元,求最多可以购买多少株雅连?
4.喜迎新学期,学校要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成,围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)求花圃的最大面积.
三、利用二次函数模型解决实际问题
1.图1是一个横断面为抛物线形状的拱桥,当水面在L时,拱顶(拱桥洞的最高点)离水面2m,水面宽为4m.如果水面宽度为6m,则水面下降( )
A.3.5m B.3m C.2.5m D.2m
2.如图所示是抛物线型的拱桥,当拱顶离水面2米时,水面宽4米,如果水面宽为2米,则水面下降( )米.
A.1米 B.2米
C.3米 D.10米
3.如图,一小球从斜坡O点以一定的方向弹出,球的飞行路线可以用二次函数y=ax2+bx(a<0)刻画,斜坡可以用一次函数刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如表:
x 0 1 2 m 4 5 6 7 …
y 0 6 8 n …
(1)①m= ,n= ;
②小球的落点是A,求点A的坐标.
(2)小球飞行高度y(米)与飞行时间t(秒)满足关系:y=﹣5t2+vt.
①小球飞行的最大高度为 米;
②求v的值.
4.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.
(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);
(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?