专题07 力学三大观点的综合应用(原卷版+解析版)——【三年高考】备战2025年高考物理真题汇编与应试策略

文档属性

名称 专题07 力学三大观点的综合应用(原卷版+解析版)——【三年高考】备战2025年高考物理真题汇编与应试策略
格式 zip
文件大小 19.3MB
资源类型 试卷
版本资源 通用版
科目 物理
更新时间 2025-03-06 10:40:53

文档简介

/ 让教学更有效 2025年高考 | 物理学科
专题07 力学三大观点的综合应用
……………………………………………………………………………………
目录
TOC \o "1-3" \h \z \u 一、考情统计 1
二、应试策略 1
三、真题汇编 2
考向1 力学三大观点的理解与辨析 2
考向2 力学三大观点解决力学综合问题 14
……………………………………………………………………………………
一、考情统计
力学三大观点的理解与辨析 2024 重庆、2024 北京、2024 甘肃、2024 广西、2024 福建、2023 河北、2023 福建、2023 重庆、2023 全国、2023 全国、2022 海南、2022 重庆、2022 湖北、2022 山东、2022 重庆、2022 湖南、2022 全国
力学三大观点解决力学综合问题 2024 安徽、2024 安徽、2024 广东、2024 广西、2024 宁夏四川、2024 天津、2024 贵州、2024 重庆、2024 浙江、2024 甘肃、2024 广东、2024 河北、2024 湖北、2024 湖南、2024 安徽、2024 辽宁、2024 浙江、2024 上海、2023 河北、2023 重庆、2023 广东、2023 天津、2023 北京、2023 山东、2023 浙江、2023 辽宁、2023 江苏、2023 湖南、2023 全国、2023 浙江、2022 北京、2022 天津、2022 福建、2022 北京、2022 海南、2022 湖北、2022 广东、2022 河北、2022 湖南、2022 山东、2022 全国
二、应试策略
1.命题热度角度:本章内容属于高考考查的热点和难点,既有选择题、又有计算题,或与电磁感应等结合。命题趋势是以综合题的形式考查,这类题需要结合牛顿运动定律、功和能等物理观念解决问题,考查考生的综合应用能力,难度也比较大。
2.试题情景:跳水、蹦床、蹦极、火箭发射、无人机、跳伞运动、过山车等能量问题,安全行车(机车碰撞、安全气囊)、交通运输(喷气式飞机)、体育运动(滑冰接力、球类运动)等。
3.备考策略: 复习本章时,备考中把处理综合问题的三大方法——动力学的方法、能量的方法、动量的方法,分类复习掌握,重点掌握对以下知识点:①牛顿运动定律结合运动学公式处理匀变速直线运动的问题;②动能定理结合能量守恒定律处理变力及曲线运动问题;③动量定理结合能量守恒定律、动量守恒定律处理碰撞、反冲类问题。
三、真题汇编
考向1 力学三大观点的理解与辨析
1.(2024·重庆)活检针可用于活体组织取样,如图所示。取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。针鞘质量为m,针鞘在软组织中运动距离d1后进入目标组织,继续运动d2后停下来。若两段运动中针翘鞘整体受到阻力均视为恒力。大小分别为F1、F2,则针鞘( )
A.被弹出时速度大小为
B.到达目标组织表面时的动能为F1d1
C.运动d2过程中,阻力做功为(F1+F2)d2
D.运动d2的过程中动量变化量大小为
【答案】A
【详解】A.根据动能定理有,解得,故A正确;
B.针鞘到达目标组织表面后,继续前进d2减速至零,有Ek = F2d2,故B错误;
C.针鞘运动d2的过程中,克服阻力做功为F2d2,故C错误;
D.针鞘运动d2的过程中,动量变化量大小,故D错误。
故选A。
2.(2024·北京)将小球竖直向上抛出,小球从抛出到落回原处的过程中,若所受空气阻力大小与速度大小成正比,则下列说法正确的是(  )
A.上升和下落两过程的时间相等
B.上升和下落两过程损失的机械能相等
C.上升过程合力的冲量大于下落过程合力的冲量
D.上升过程的加速度始终小于下落过程的加速度
【答案】C
【详解】D.小球上升过程中受到向下的空气阻力,下落过程中受到向上的空气阻力,由牛顿第二定律可知上升过程所受合力(加速度)总大于下落过程所受合力(加速度),D错误;
C.小球运动的整个过程中,空气阻力做负功,由动能定理可知小球落回原处时的速度小于抛出时的速度,所以上升过程中小球动量变化的大小大于下落过程中动量变化的大小,由动量定理可知,上升过程合力的冲量大于下落过程合力的冲量,C正确;
A.上升与下落经过同一位置时的速度,上升时更大,所以上升过程中平均速度大于下落过程中的平均速度,所以上升过程所用时间小于下落过程所用时间,A错误;
B.经同一位置,上升过程中所受空气阻力大于下落过程所受阻力,由功能关系可知,上升过程机械能损失大于下落过程机械能损失,B错误。
故选C。
3.(2023·河北)某科研团队通过传感器收集并分析运动数据,为跳高运动员的技术动作改进提供参考。图为跳高运动员在起跳过程中,其单位质量受到地面的竖直方向支持力随时间变化关系曲线。图像中至内,曲线下方的面积与阴影部分的面积相等。已知该运动员的质量为,重力加速度g取。下列说法正确的是(  )
A.起跳过程中运动员的最大加速度约为
B.起跳后运动员重心上升的平均速度大小约为
C.起跳后运动员重心上升的最大高度约为
D.起跳过程中运动员所受合力的冲量大小约为
【答案】C
【详解】A.由图像可知,运动员受到的最大支持力约为,根据牛顿第二定律可知,起跳过程中运动员的最大加速度约为,故A错误;
BCD.根据图像可知,起跳过程中支持力的冲量为,起跳过程中运动员所受合力的冲量大小约为,根据动量定理可得,解得起跳离开地面瞬间的速度为,则起跳后运动员重心上升的平均速度为,起跳后运动员重心上升的最大高度为,故BD错误,C正确。
故选C。
4.(2022·海南)在冰上接力比赛时,甲推乙的作用力是,乙对甲的作用力是,则这两个力(  )
A.大小相等,方向相反 B.大小相等,方向相同
C.的冲量大于的冲量 D.的冲量小于的冲量
【答案】A
【详解】根据题意可知和是相互作用力,根据牛顿第三定律可知和等大反向、具有同时性;根据冲量定义式可知和的冲量大小相等,方向相反。
故选A。
5.(2022·重庆)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,某小组得到了假人头部所受安全气囊的作用力随时间变化的曲线(如图)。从碰撞开始到碰撞结束过程中,若假人头部只受到安全气囊的作用,则由曲线可知,假人头部( )
A.速度的变化量等于曲线与横轴围成的面积 B.动量大小先增大后减小
C.动能变化正比于曲线与横轴围成的面积 D.加速度大小先增大后减小
【答案】D
【详解】AB.由题知假人的头部只受到安全气囊的作用,则F—t图像的面积即合外力的冲量,再根据动量定理可知F—t图像的面积也是动量的变化量,且图线一直在t轴的上方,由于头部有初动量,由图可知,动量变化越来越大,则动量的大小一直减小到假人头静止,动量变化最大,AB错误;
C.根据动量与动能的关系有,而F—t图像的面积是动量的变化量,则动能的变化量与曲线与横轴围成的面积不成正比,C错误;
D.由题知假人的头部只受到安全气囊的作用,则根据牛顿定律可知a∝F,即假人头部的加速度先增大后减小,D正确。
故选D。
6.(2022·湖北)一质点做曲线运动,在前一段时间内速度大小由v增大到2v,在随后的一段时间内速度大小由2v增大到5v。前后两段时间内,合外力对质点做功分别为W1和W2,合外力的冲量大小分别为I1和I2。下列关系式一定成立的是(  )
A. , B. ,
C., D.,
【答案】D
【详解】根据动能定理可知,,可得,由于速度是矢量,具有方向,当初、末速度方向相同时,动量变化量最小,方向相反时,动量变化量最大,因此冲量的大小范围是,,比较可得,一定成立。
故选D。
7.(2022·山东)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。如图所示,发射舱内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。从火箭开始运动到点火的过程中( )
A.火箭的加速度为零时,动能最大
B.高压气体释放的能量全部转化为火箭的动能
C.高压气体对火箭推力的冲量等于火箭动量的增加量
D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量
【答案】A
【详解】A.火箭从发射舱发射出来,受竖直向下的重力、竖直向下的空气阻力和竖直向上的高压气体的推力作用,且推力大小不断减小,刚开始向上的时候高压气体的推力大于向下的重力和空气阻力之和,故火箭向上做加速度减小的加速运动,当向上的高压气体的推力等于向下的重力和空气阻力之和时,火箭的加速度为零,速度最大,接着向上的高压气体的推力小于向下的重力和空气阻力之和时,火箭接着向上做加速度增大的减速运动,直至速度为零,故当火箭的加速度为零时,速度最大,动能最大,故A正确;
B.根据能量守恒定律,可知高压气体释放的能量转化为火箭的动能、火箭的重力势能和内能,故B错误;
C.根据动量定理,可知合力冲量等于火箭动量的增加量,故C错误;
D.根据功能关系,可知高压气体的推力和空气阻力对火箭做功之和等于火箭机械能的增加量,故D错误。
故选A。
8.(2024·甘肃)(多选)电动小车在水平面内做匀速圆周运动,下列说法正确的是(  )
A.小车的动能不变 B.小车的动量守恒
C.小车的加速度不变 D.小车所受的合外力一定指向圆心
【答案】AD
【详解】A.做匀速圆周运动的物体速度大小不变,故动能不变,故A正确;
B.做匀速圆周运动的物体速度方向时刻在改变,故动量不守恒,故B错误;
C.做匀速圆周运动的物体加速度大小不变,方向时刻在改变,故C错误;
D.做匀速圆周运动的物体所受的合外力一定指向圆心,故D正确。
故选AD。
9.(2024·广西)(多选)如图,坚硬的水平地面上放置一木料,木料上有一个竖直方向的方孔,方孔各侧壁完全相同。木栓材质坚硬,形状为正四棱台,上下底面均为正方形,四个侧面完全相同且与上底面的夹角均为。木栓质量为m,与方孔侧壁的动摩擦因数为。将木栓对准方孔,接触但无挤压,锤子以极短时间撞击木栓后反弹,锤子对木栓冲量为I,方向竖直向下。木栓在竖直方向前进了的位移,未到达方孔底部。若进入的过程方孔侧壁发生弹性形变,弹力呈线性变化,最大静摩擦力约等于滑动摩擦力,则(  )
A.进入过程,木料对木栓的合力的冲量为
B.进入过程,木料对木栓的平均阻力大小约为
C.进入过程,木料和木栓的机械能共损失了
D.木栓前进后木料对木栓一个侧面的最大静摩擦力大小约为
【答案】BD
【详解】A.锤子撞击木栓到木栓进入过程,对木栓分析可知合外力的冲量为0,锤子对木栓的冲量为I,由于重力有冲量,则木料对木栓的合力冲量不为-I,故A错误;
B.锤子撞击木栓后木栓获得的动能为,木栓进入过程根据动能定理有,解得平均阻力为,故B正确;
C.木栓进入过程损失的动能与重力势能,一部分转化为系统内能另一部分转化为木栓的弹性势能,故C错误;
D.对木栓的一个侧面受力分析如图
由于方孔侧壁弹力成线性变化,则有,且根据B选项求得平均阻力,又因为,联立可得,故D正确。
故选BD。
10.(2024·福建)(多选)如图(a),水平地面上固定有一倾角为的足够长光滑斜面,一质量为的滑块锁定在斜面上。时解除锁定,同时对滑块施加沿斜面方向的拉力,随时间的变化关系如图(b)所示,取沿斜面向下为正方向,重力加速度大小为,则滑块(  )
A.在内一直沿斜面向下运动
B.在内所受合外力的总冲量大小为零
C.在时动量大小是在时的一半
D.在内的位移大小比在内的小
【答案】AD
【详解】根据图像可知当时,物块加速度为,方向沿斜面向下;当时,物块加速度大小为,方向沿斜面向上,作出物块内的图像
A.根据图像可知,物体一直沿斜面向下运动,故A正确;
B.根据图像可知,物块的末速度不等于0,根据动量定理,故B错误;
C.根据图像可知时物块速度大于时物块的速度,故时动量不是时的一半,故C错误;
D.图像与横轴围成的面积表示位移,故由图像可知过程物体的位移小于的位移,故D正确。
故选AD。
11.(2023·福建)(多选)甲、乙两辆完全相同的小车均由静止沿同一方向出发做直线运动。以出发时刻为计时零点,甲车的速度—时间图像如图(a)所示,乙车所受合外力—时间图像如图(b)所示。则( )
A.0 ~ 2s内,甲车的加速度大小逐渐增大
B.乙车在t = 2s和t = 6s时的速度相同
C.2 ~ 6s内,甲、乙两车的位移不同
D.t = 8s时,甲、乙两车的动能不同
【答案】BC
【详解】A.由题知甲车的速度一时间图像如图(a)所示,则根据图(a)可知0 ~ 2s内,甲车做匀加速直线运动,加速度大小不变,故A错误;
B.由题知乙车所受合外力一时间图像如图(b)所示,则乙车在0 ~ 2s内根据动量定理有I2 = mv2,I2 = S0 ~ 2 = 2N·s,乙车在0 ~ 6s内根据动量定理有I6 = mv6,I6 = S0 ~ 6 = 2N·s,则可知乙车在t = 2s和t = 6s时的速度相同,故B正确;
C.根据图(a)可知,2 ~ 6s内甲车的位移为0;根据图(b)可知,2 ~ 6s内乙车一直向正方向运动,则2 ~ 6s内,甲、乙两车的位移不同,故C正确;
D.根据图(a)可知,t = 8s时甲车的速度为0,则t = 8s时,甲车的动能为0;乙车在0 ~ 8s内根据动量定理有I8 = mv8,I8 = S0 ~ 8 = 0,可知t = 8s时乙车的速度为0,则t = 8s时,乙车的动能为0,故D错误。
故选BC。
12.(2023·重庆)(多选)某实验小组测得在竖直方向飞行的无人机飞行高度y随时间t的变化曲线如图所示,E、F、M、N为曲线上的点,EF、MN段可视为两段直线,其方程分别为和。无人机及其载物的总质量为2kg,取竖直向上为正方向。则(  )

A.EF段无人机的速度大小为4m/s
B.FM段无人机的货物处于失重状态
C.FN段无人机和装载物总动量变化量大小为4kg m/s
D.MN段无人机机械能守恒
【答案】AB
【详解】A.根据EF段方程,可知EF段无人机的速度大小为,故A正确;
B.根据图像的切线斜率表示无人机的速度,可知FM段无人机先向上做减速运动,后向下做加速运动,加速度方向一直向下,则无人机的货物处于失重状态,故B正确;
C.根据MN段方程,可知MN段无人机的速度为,则有,可知FN段无人机和装载物总动量变化量大小为12kg m/s,故C错误;
D.MN段无人机向下做匀速直线运动,动能不变,重力势能减少,无人机的机械能不守恒,故D错误。
故选AB。
13.(2023·全国)(多选)一质量为1kg的物体在水平拉力的作用下,由静止开始在水平地面上沿x轴运动,出发点为x轴零点,拉力做的功W与物体坐标x的关系如图所示。物体与水平地面间的动摩擦因数为0.4,重力加速度大小取10m/s2。下列说法正确的是( )

A.在x = 1m时,拉力的功率为6W
B.在x = 4m时,物体的动能为2J
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为8J
D.从x = 0运动到x = 4的过程中,物体的动量最大为2kg m/s
【答案】BC
【详解】由于拉力在水平方向,则拉力做的功为W = Fx,可看出W—x图像的斜率代表拉力F。
AB.在物体运动的过程中根据动能定理有,则x = 1m时物体的速度为v1= 2m/s,x = 1m时,拉力为,则此时拉力的功率P = Fv1= 12W,x = 4m时物体的动能为Ek= 2J
A错误、B正确;
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为Wf= μmgx = 8J,C正确;
D.根据W—x图像可知在0—2m的过程中F1= 6N,2—4m的过程中F2= 3N,由于物体受到的摩擦力恒为f = 4N,则物体在x = 2m处速度最大,且根据选项AB分析可知此时的速度,则从x = 0运动到x = 4的过程中,物体的动量最大为,D错误。
故选BC。
14.(2023·全国)(多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N极正对着乙的S极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等。现同时释放甲和乙,在它们相互接近过程中的任一时刻(  )

A.甲的速度大小比乙的大 B.甲的动量大小比乙的小
C.甲的动量大小与乙的相等 D.甲和乙的动量之和不为零
【答案】BD
【详解】对甲、乙两条形磁铁分别做受力分析,如图所示

A.根据牛顿第二定律有,,由于m甲 > m乙,所以a甲 < a乙,由于两物体运动时间相同,且同时由静止释放,可得v甲 < v乙,A错误;
BCD.对于整个系统而言,由于μm甲g > μm乙g,合力方向向左,合冲量方向向左,所以合动量方向向左,显然甲的动量大小比乙的小,BD正确、C错误。
故选BD。
15.(2022·重庆)(多选)一物块在倾角为的固定斜面上受到方向与斜面平行、大小与摩擦力相等的拉力作用,由静止开始沿斜面向下做匀变速直线运动,物块与斜面间的动摩擦因数处处相同。若拉力沿斜面向下时,物块滑到底端的过程中重力和摩擦力对物块做功随时间的变化分别如图曲线①、②所示,则(  )
A.物块与斜面间的动摩擦因数为
B.当拉力沿斜面向上,重力做功为时,物块动能为
C.当拉力分别沿斜面向上和向下时,物块的加速度大小之比为1∶3
D.当拉力分别沿斜面向上和向下时,物块滑到底端时的动量大小之比为
【答案】BC
【详解】A.对物体受力分析可知,平行于斜面向下的拉力大小等于滑动摩擦力,有,由牛顿第二定律可知,物体下滑的加速度为,则拉力沿斜面向下时,物块滑到底端的过程中重力和摩擦力对物块做功为,,代入数据联立解得,故A错误;
C.当拉力沿斜面向上,由牛顿第二定律有,解得,则拉力分别沿斜面向上和向下时,物块的加速度大小之比为,故C正确;
B.当拉力沿斜面向上,重力做功为,合力做功为,则其比值为,则重力做功为时,物块的动能即合外力做功为,故B正确;
D.当拉力分别沿斜面向上和向下时,物块滑到底端时的动量大小为,则动量的大小之比为,故D错误。
故选BC。
16.(2022·湖南)(多选)神舟十三号返回舱进入大气层一段时间后,逐一打开引导伞、减速伞、主伞,最后启动反冲装置,实现软着陆。某兴趣小组研究了减速伞打开后返回舱的运动情况,将其运动简化为竖直方向的直线运动,其图像如图所示。设该过程中,重力加速度不变,返回舱质量不变,下列说法正确的是(  )
A.在时间内,返回舱重力的功率随时间减小
B.在时间内,返回舱的加速度不变
C.在时间内,返回舱的动量随时间减小
D.在时间内,返回舱的机械能不变
【答案】AC
【详解】A.重力的功率为,由图可知在0~t1时间内,返回舱的速度随时间减小,故重力的功率随时间减小,故A正确;
B.根据v-t图像的斜率表示加速度可知在0~t1时间内返回舱的加速度减小,故B错误;
C.在t1~t2时间内由图像可知返回舱的速度减小,故可知动量随时间减小。故C正确;
D.在t2~t3时间内,由图像可知返回舱的速度不变,则动能不变,但由于返回舱高度下降,重力势能减小,故机械能减小,故D错误。
故选AC。
17.(2022·全国)(多选)质量为的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。已知物块与地面间的动摩擦因数为0.2,重力加速度大小取。则(  )
A.时物块的动能为零
B.时物块回到初始位置
C.时物块的动量为
D.时间内F对物块所做的功为
【答案】AD
【详解】物块与地面间的摩擦力为
AC.对物块从s内由动量定理可知,即,得,3s时物块的动量为,设3s后经过时间t物块的速度减为0,由动量定理可得,即,解得,所以物块在4s时速度减为0,则此时物块的动能也为0,故A正确,C错误;
B.s物块发生的位移为x1,由动能定理可得,即,得,过程中,对物块由动能定理可得,即,得,物块开始反向运动,物块的加速度大小为,发生的位移为,即6s时物块没有回到初始位置,故B错误;
D.物块在6s时的速度大小为,拉力所做的功为
故D正确。
故选AD。
考向2 力学三大观点解决力学综合问题
18.(2024·安徽)在某装置中的光滑绝缘水平面上,三个完全相同的带电小球,通过不可伸长的绝缘轻质细线,连接成边长为d的正三角形,如图甲所示。小球质量为m,带电量为,可视为点电荷。初始时,小球均静止,细线拉直。现将球1和球2间的细线剪断,当三个小球运动到同一条直线上时,速度大小分别为、、,如图乙所示。该过程中三个小球组成的系统电势能减少了,k为静电力常量,不计空气阻力。则( )
A.该过程中小球3受到的合力大小始终不变 B.该过程中系统能量守恒,动量不守恒
C.在图乙位置,, D.在图乙位置,
【答案】D
【详解】AB.该过程中系统动能和电势能相互转化,能量守恒,对整个系统分析可知系统受到的合外力为0,故动量守恒;当三个小球运动到同一条直线上时,根据对称性可知细线中的拉力相等,此时球3受到1和2的电场力大小相等,方向相反,故可知此时球3受到的合力为0,球3从静止状态开始运动,瞬间受到的合力不为0,故该过程中小球3受到的合力在改变,故AB错误;
CD.对系统根据动量守恒,根据球1和2运动的对称性可知,解得,根据能量守恒,解得,故C错误,D正确。
故选D。
19.(2022·北京)“雪如意”是我国首座国际标准跳台滑雪场地。跳台滑雪运动中,裁判员主要根据运动员在空中的飞行距离和动作姿态评分。运动员在进行跳台滑雪时大致经过四个阶段:①助滑阶段,运动员两腿尽量深蹲,顺着助滑道的倾斜面下滑;②起跳阶段,当进入起跳区时,运动员两腿猛蹬滑道快速伸直,同时上体向前伸展;③飞行阶段,在空中运动员保持身体与雪板基本平行、两臂伸直贴放于身体两侧的姿态;④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。下列说法正确的是(  )
A.助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力
B.起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度
C.飞行阶段,运动员所采取的姿态是为了增加水平方向速度
D.着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间
【答案】B
【详解】A.助滑阶段,运动员深蹲是为了减小与空气之间的摩擦力,A错误;
B.起跳阶段,运动员猛蹬滑道主要是通过增大滑道对人的作用力,根据动量定理可知,在相同时间内,为了增加向上的速度,B正确;
C.飞行阶段,运动员所采取的姿态是为了减小水平方向的阻力,从而减小水平方向的加速度,C错误;
D.着陆阶段,运动员两腿屈膝下蹲可以延长落地时间,根据动量定理可知,可以减少身体受到的平均冲击力,D错误。
故选B。
20.(2024·安徽)(多选)一倾角为足够大的光滑斜面固定于水平地面上,在斜面上建立Oxy直角坐标系,如图(1)所示。从开始,将一可视为质点的物块从O点由静止释放,同时对物块施加沿x轴正方向的力和,其大小与时间t的关系如图(2)所示。已知物块的质量为1.2kg,重力加速度g取,不计空气阻力。则( )
A.物块始终做匀变速曲线运动
B.时,物块的y坐标值为2.5m
C.时,物块的加速度大小为
D.时,物块的速度大小为
【答案】BD
【详解】A.根据图像可得,,故两力的合力为,物块在y轴方向受到的力不变为,x轴方向的力在改变,合力在改变,故物块做的不是匀变速曲线运动,故A错误;
B.在y轴方向的加速度为,故时,物块的y坐标值为,故B正确;
C.时,,故此时加速度大小为,故C错误;
D.对x轴正方向,对物块根据动量定理,由于F与时间t成线性关系故可得,解得,此时y轴方向速度为,故此时物块的速度大小为,故D正确。
故选BD。
21.(2024·广东)(多选)如图所示,光滑斜坡上,可视为质点的甲、乙两个相同滑块,分别从、高度同时由静止开始下滑。斜坡与水平面在O处平滑相接,滑块与水平面间的动摩擦因数为,乙在水平面上追上甲时发生弹性碰撞。忽略空气阻力。下列说法正确的有(  )
A.甲在斜坡上运动时与乙相对静止
B.碰撞后瞬间甲的速度等于碰撞前瞬间乙的速度
C.乙的运动时间与无关
D.甲最终停止位置与O处相距
【答案】ABD
【详解】A.两滑块在光滑斜坡上加速度相同,同时由静止开始下滑,则相对速度为0,故A正确;
B.两滑块滑到水平面后均做匀减速运动,由于两滑块质量相同,且发生弹性碰撞,可知碰后两滑块交换速度,即碰撞后瞬间甲的速度等于碰撞前瞬间乙的速度,故B正确;
C.设斜面倾角为θ,乙下滑过程有,在水平面运动一段时间t2后与甲相碰,碰后以甲碰前速度做匀减速运动t3,乙运动的时间为,由于t1与有关,则总时间与有关,故C错误;
D.乙下滑过程有,由于甲和乙发生弹性碰撞,交换速度,则可知甲最终停止位置与不发生碰撞时乙最终停止的位置相同;则如果不发生碰撞,乙在水平面运动到停止有,联立可得,即发生碰撞后甲最终停止位置与O处相距,故D正确。
故选ABD。
22.(2024·广西)(多选)如图,在光滑平台上有两个相同的弹性小球M和N。M水平向右运动,速度大小为v。M与静置于平台边缘的N发生正碰,碰撞过程中总机械能守恒。若不计空气阻力,则碰撞后,N在(  )
A.竖直墙面上的垂直投影的运动是匀速运动
B.竖直墙面上的垂直投影的运动是匀加速运动
C.水平地面上的垂直投影的运动速度大小等于v
D.水平地面上的垂直投影的运动速度大小大于v
【答案】BC
【详解】由于两小球碰撞过程中机械能守恒,可知两小球碰撞过程是弹性碰撞,根据动量守恒和能量守恒可知,,由于两小球质量相等,故碰撞后两小球交换速度,即,,碰后小球N做平抛运动,在水平方向做匀速直线运动,即水平地面上的垂直投影的运动速度大小等于v;在竖直方向上做自由落体运动,即竖直墙面上的垂直投影的运动是匀加速运动。
故选BC。
23.(2024·宁夏四川)(多选)蹦床运动中,体重为的运动员在时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示。假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平。忽略空气阻力,重力加速度大小取。下列说法正确的是(  )
A.时,运动员的重力势能最大
B.时,运动员的速度大小为
C.时,运动员恰好运动到最大高度处
D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为
【答案】BD
【详解】A.根据牛顿第三定律结合题图可知时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;
BC.根据题图可知运动员从离开蹦床到再次落到蹦床上经历的时间为,根据竖直上抛运动的对称性可知,运动员上升时间为1s,则在时,运动员恰好运动到最大高度处,时运动员的速度大小,故B正确,C错误;
D.同理可知运动员落到蹦床时的速度大小为,以竖直向上为正方向,根据动量定理,其中,代入数据可得,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为,故D正确。
故选BD。
24.(2024·天津)如图所示,光滑半圆轨道直径沿竖直方向,最低点与水平面相切。对静置于轨道最低点的小球A施加水平向左的瞬时冲量I,A沿轨道运动到最高点时,与用轻绳悬挂的静止小球B正碰并粘在一起。已知I = 1.8 N s,A、B的质量分别为mA = 0.3 kg、mB = 0.1 kg,轨道半径和绳长均为R = 0.5 m,两球均视为质点,轻绳不可伸长,重力加速度g取10 m/s2,不计空气阻力。求:
(1)与B碰前瞬间A的速度大小;
(2)A、B碰后瞬间轻绳的拉力大小。
【答案】(1)4 m/s (2)11.2 N
【详解】(1)根据题意,设小球A从最低点开始运动时的速度为v0,由动量定理有
设与B碰前瞬间A的速度大小v,从最低点到最高点,由动能定理有
联立代入数据解得
(2)A与用轻绳悬挂的静止小球B正碰并粘在一起,由动量守恒定律有
设A、B碰后瞬间轻绳的拉力大小为F,由牛顿第二定律有
联立代入数据解得
25.(2024·贵州)如图,半径为的四分之一光滑圆轨道固定在竖直平面内,其末端与水平地面相切于P点,的长度。一长为的水平传送带以恒定速率逆时针转动,其右端与地面在M点无缝对接。物块a从圆轨道顶端由静止释放,沿轨道下滑至P点,再向左做直线运动至M点与静止的物块b发生弹性正碰,碰撞时间极短。碰撞后b向左运动到达传送带的左端N时,瞬间给b一水平向右的冲量I,其大小为。以后每隔给b一相同的瞬时冲量I,直到b离开传送带。已知a的质量为的质量为,它们均可视为质点。a、b与地面及传送带间的动摩擦因数均为,取重力加速度大小。求:
(1)a运动到圆轨道底端时轨道对它的支持力大小;
(2)b从M运动到N的时间;
(3)b从N运动到M的过程中与传送带摩擦产生的热量。
【答案】(1)30N (2)3.2s (3)95J
【详解】(1)a从静止释放到圆轨道底端过程,根据机械能守恒定律
在点,设轨道对它的支持力大小为,根据牛顿第二定律
联立解得
(2)a从静止释放到M点过程中,根据动能定理
解得
与发生弹性碰撞的过程,根据动量守恒定律和机械能守恒定律有
解得
滑上传送带后,根据牛顿第二定律
解得
的速度减小到与传送带速度相等所需的时间
对地位移
此后做匀速直线运动,到达传送带最左端还需要的时间
b从M运动到N的时间
(3)设向右为正方向,瞬间给b一水平向右的冲量,对根据动量定理
解得
向右减速到零所需的时间
然后向左加速到所需的时间
可得
在时间内向右运动的距离
循环10次后向右运动的距离
每一次相对传动带运动的路程
b从N向右运动3m的过程中与传送带摩擦产生的热量
然后继续向右减速运动,根据运动学公式
解得
此过程,b相对传动带运动的路程
此过程中与传送带摩擦产生的热量
b从N运动到M的过程中与传送带摩擦产生的热量
26.(2024·重庆)如图所示,M、N两个钉子固定于相距a的两点,M的正下方有不可伸长的轻质细绳,一端固定在M上,另一端连接位于M正下方放置于水平地面质量为m的小木块B,绳长与M到地面的距离均为10a,质量为2m的小木块A,沿水平方向于B发生弹性碰撞,碰撞时间极短,A与地面间摩擦因数为,重力加速为g,忽略空气阻力和钉子直径,不计绳被钉子阻挡和绳断裂时的机械能损失。
(1)若碰后,B在竖直面内做圆周运动,且能经过圆周运动最高点,求B碰后瞬间速度的最小值;
(2)若改变A碰前瞬间的速度,碰后A运动到P点停止,B在竖直面圆周运动旋转2圈,经过M正下方时细绳子断开,B也来到P点,求B碰后瞬间的速度大小;
(3)若拉力达到12mg细绳会断,上下移动N的位置,保持N在M正上方,B碰后瞬间的速度与(2)问中的相同,使B旋转n圈。经过M正下的时细绳断开,求MN之间距离的范围,及在n的所有取值中,B落在地面时水平位移的最小值和最大值。
【答案】(1) (2) (3)(n = 1,2,3,…),,
【详解】(1)碰后B能在竖直面内做圆周运动,轨迹半径为10a,设碰后B的最小速度大小为v0,最高点速度大小为v,在最高点时由牛顿第二足定律有
B从最低点到最高点由动能定理可得
解得
(2)A和B碰撞过程中动量守恒,设碰前A的速度大小为v1碰后A的速度大小为v2。碰后B的速度大小为v3,则有
2mv1 = 2mv2+mv3
碰后A减速到0,有
碰后B做两周圆周运动,绳子在MN间缠绕2圈,缩短4a,在M点正下方时,离M点6a,离地面4a,此时速度大小为v4,由功能关系得
B随后做平抛运动,有
L = v4t
解得
(3)设MN间距离为h,B转n圈后到达M正下方速度大小为v5,绳缩短2nh,绳断开时,以M为圆心,由牛顿第二定律得(n = 1,2,3,…)
以N为圆心,由牛顿第二定律得(n = 1,2,3,…)
从碰后到B转n圈后到达M正下方,由功能关系得(n = 1,2,3,…)
解得(n = 1,2,3,…)
绳断后,B做平抛运动,有
(n = 1,2,3,…)
s = v5t
可得(n = 1,2,3,…)
由于(n = 1,2,3,…)
则由数学分析可得
当时,
当n = 1时,,
27.(2024·浙江)一弹射游戏装置竖直截面如图所示,固定的光滑水平直轨道AB、半径为R的光滑螺旋圆形轨道BCD、光滑水平直轨道DE平滑连接。长为L、质量为M的平板紧靠长为d的固定凹槽EFGH侧壁EF放置,平板上表面与DEH齐平。将一质量为m的小滑块从A端弹射,经过轨道BCD后滑上平板并带动平板一起运动,平板到达HG即被锁定。已知R=0.5 m,d=4.4 m,L=1.8 m,M=m=0.1 kg,平板与滑块间的动摩擦因数μ1=0.6、与凹槽水平底面FG间的动摩擦因数为μ2。滑块视为质点,不计空气阻力,最大静摩擦力等于滑动摩擦力,重力加速度。
(1)滑块恰好能通过圆形轨道最高点C时,求滑块离开弹簧时速度v0的大小;
(2)若μ2=0,滑块恰好过C点后,求平板加速至与滑块共速时系统损耗的机械能;
(3)若μ2=0.1,滑块能到达H点,求其离开弹簧时的最大速度vm。
【答案】(1)5m/s;(2)0.625J;(3)6m/s
【详解】(1)滑块恰好能通过圆形轨道最高点C时
从滑块离开弹簧到C过程,根据动能定理
解得
(2)平板加速至与滑块共速过程,根据动量守恒
根能量守恒
解得
(3)若μ2=0.1,平板与滑块相互作用过程中,加速度分别为
共速后,共同加速度大小为
考虑滑块可能一直减速直到H,也可能先与木板共速然后共同减速;
假设先与木板共速然后共同减速,则共速过程
共速过程,滑块、木板位移分别为
共速时,相对位移应为
解得,
随后共同减速
到达H速度
说明可以到达H,因此假设成立,若滑块初速度再增大,则会从木板右侧掉落。
28.(2024·甘肃)如图,质量为2kg的小球A(视为质点)在细绳和OP作用下处于平衡状态,细绳,与竖直方向的夹角均为60°。质量为6kg的木板B静止在光滑水平面上,质量为2kg的物块C静止在B的左端。剪断细绳,小球A开始运动。(重力加速度g取)
(1)求A运动到最低点时细绳OP所受的拉力。
(2)A在最低点时,细绳OP断裂。A飞出后恰好与C左侧碰撞(时间极短)、碰后A竖直下落,C水平向右运动。求碰后C的速度大小。
(3)A、C碰后,C相对B滑行4m后与B共速。求C和B之间的动摩擦因数。
【答案】(1);(2);(3)
【详解】根据题意,设AC质量为,B的质量为,细绳长为,初始时细线与竖直方向夹角。
(1)A开始运动到最低点有
对最低点受力分析,根据牛顿第二定律得
解得,
(2)A与C相碰时,水平方向动量守恒,由于碰后A竖直下落可知
故解得
(3)A、C碰后,C相对B滑行4m后与B共速,则对CB分析,过程中根据动量守恒可得
根据能量守恒得
联立解得
29.(2024·广东)汽车的安全带和安全气囊是有效保护乘客的装置。
(1)安全带能通过感应车的加速度自动锁定,其原理的简化模型如图甲所示。在水平路面上刹车的过程中,敏感球由于惯性沿底座斜面上滑直到与车达到共同的加速度a,同时顶起敏感臂,使之处于水平状态,并卡住卷轴外齿轮,锁定安全带。此时敏感臂对敏感球的压力大小为,敏感球的质量为m,重力加速度为g。忽略敏感球受到的摩擦力。求斜面倾角的正切值。
(2)如图乙所示,在安全气囊的性能测试中,可视为质点的头锤从离气囊表面高度为H处做自由落体运动。与正下方的气囊发生碰撞。以头锤到气囊表面为计时起点,气囊对头锤竖直方向作用力F随时间t的变化规律,可近似用图丙所示的图像描述。已知头锤质量,重力加速度大小取。求:
①碰撞过程中F的冲量大小和方向;
②碰撞结束后头锤上升的最大高度。
【答案】(1);(2)①330N s,方向竖直向上;②0.2m
【详解】(1)敏感球受向下的重力mg和敏感臂向下的压力FN以及斜面的支持力N,则由牛顿第二定律可知
解得
(2)①由图像可知碰撞过程中F的冲量大小,方向竖直向上;
②头锤落到气囊上时的速度
与气囊作用过程由动量定理(向上为正方向)
解得v=2m/s
则上升的最大高度
30.(2024·河北)如图,三块厚度相同、质量相等的木板A、B、C(上表面均粗糙)并排静止在光滑水平面上,尺寸不计的智能机器人静止于A木板左端。已知三块木板质量均为A木板长度为,机器人质量为,重力加速度g取,忽略空气阻力。
(1)机器人从A木板左端走到A木板右端时,求A、B木板间的水平距离。
(2)机器人走到A木板右端相对木板静止后,以做功最少的方式从A木板右端跳到B木板左端,求起跳过程机器人做的功,及跳离瞬间的速度方向与水平方向夹角的正切值。
(3)若机器人以做功最少的方式跳到B木板左端后立刻与B木板相对静止,随即相对B木板连续不停地3次等间距跳到B木板右端,此时B木板恰好追上A木板。求该时刻A、C两木板间距与B木板长度的关系。
【答案】(1);(2)90J,2;(3)
【详解】(1)机器人从A木板左端走到A木板右端,机器人与A木板组成的系统动量守恒,设机器人质量为M,三个木板质量为m,取向右为正方向,则
机器人从A木板左端走到A木板右端时,机器人、木板A运动位移分别为为、,则有
同时有
解得A、B木板间的水平距离
(2)设机器人起跳的速度大小为,方向与水平方向的夹角为,从A木板右端跳到B木板左端时间为t,根据斜抛运动规律得
联立解得
机器人跳离A的过程,系统水平方向动量守恒
根据能量守恒可得机器人做的功为
联立得
根据数学知识可得当时,即时,W取最小值,代入数值得此时
(3)根据可得,根据

分析可知A木板以该速度向左匀速运动,机器人跳离A木板到与B木板相对静止的过程中,机器人与BC木板组成的系统在水平方向动量守恒,得
解得
该过程A木板向左运动的距离为
机器人连续3次等间距跳到B木板右端,整个过程机器人和B木板组成的系统水平方向动量守恒,设每次起跳机器人的水平速度大小为,B木板的速度大小为,机器人每次跳跃的时间为,取向右为正方向,得①
每次跳跃时机器人和B木板的相对位移为,可得②
机器人到B木板右端时,B木板恰好追上A木板,从机器人跳到B左端到跳到B右端的过程中,AB木板的位移差为
可得③
联立①②③解得
故A、C两木板间距为
解得
31.(2024·湖北)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
【答案】(1);(2);(3)
【详解】(1)根据题意,小物块在传送带上,由牛顿第二定律有
解得
由运动学公式可得,小物块与传送带共速时运动的距离为
可知,小物块运动到传送带右端前与传送带共速,即小物块与小球碰撞前瞬间,小物块的速度大小等于传送带的速度大小。
(2)小物块运动到右端与小球正碰,碰撞时间极短,小物块与小球组成的系统动量守恒,以向右为正方向,由动量守恒定律有
其中,
解得
小物块与小球碰撞过程中,两者构成的系统损失的总动能为
解得
(3)若小球运动到P点正上方,绳子恰好不松弛,设此时P点到O点的距离为,小球在P点正上方的速度为,在P点正上方,由牛顿第二定律有
小球从点正下方到P点正上方过程中,由机械能守恒定律有
联立解得
即P点到O点的最小距离为。
32.(2024·湖南)如图,半径为R的圆环水平放置并固定,圆环内有质量为mA和mB的小球A和B(mA>mB)。初始时小球A以初速度v0沿圆环切线方向运动,与静止的小球B发生碰撞。不计小球与圆环之间的摩擦,两小球始终在圆环内运动。
(1)若小球A与B碰撞后结合在一起,求碰撞后小球组合体的速度大小及做圆周运动所需向心力的大小;
(2)若小球A与B之间为弹性碰撞,且所有的碰撞位置刚好位于等边三角形的三个顶点,求小球的质量比。
(3)若小球A与B之间为非弹性碰撞,每次碰撞后的相对速度大小为碰撞前的相对速度大小的e倍(0【答案】(1),;(2)或;
(3)
【详解】(1)有题意可知A、B系统碰撞前后动量守恒,设碰撞后两小球的速度大小为v,则根据动量守恒有
可得
碰撞后根据牛顿第二定律有
可得
(2)若两球发生弹性碰撞,设碰后速度分别为vA,vB,则碰后动量和能量守恒有
联立解得,
因为所有的碰撞位置刚好位于等边三角形的三个顶点,如图
①若第二次碰撞发生在图中的b点,则从第一次碰撞到第二次碰撞之间,A、B通过的路程之比为,则有
联立解得
由于两质量均为正数,故k1=0,即
对第二次碰撞,设A、B碰撞后的速度大小分别为,,则同样有
联立解得,,故第三次碰撞发生在b点、第四次碰撞发生在c点,以此类推,满足题意。
②若第二次碰撞发生在图中的c点,则从第一次碰撞到第二次碰撞之间,A、B通过的路程之比为;所以
联立可得
因为两质量均为正数,故k2=0,即
根据①的分析可证,,满足题意。
综上可知或。
(3)第一次碰前相对速度大小为v0,第一次碰后的相对速度大小为,第一次碰后与第二次相碰前B球比A球多运动一圈,即B球相对A球运动一圈,有
第一次碰撞动量守恒有

联立解得
B球运动的路程
第二次碰撞的相对速度大小为
第二次碰撞有

联立可得
所以B球运动的路程
一共碰了2n次,有
33.(2024·安徽)如图所示,一实验小车静止在光滑水平面上,其上表面有粗糙水平轨道与光滑四分之一圆弧轨道。圆弧轨道与水平轨道相切于圆弧轨道最低点,一物块静止于小车最左端,一小球用不可伸长的轻质细线悬挂于O点正下方,并轻靠在物块左侧。现将细线拉直到水平位置时,静止释放小球,小球运动到最低点时与物块发生弹性碰撞。碰撞后,物块沿着小车上的轨道运动,已知细线长。小球质量。物块、小车质量均为。小车上的水平轨道长。圆弧轨道半径。小球、物块均可视为质点。不计空气阻力,重力加速度g取。
(1)求小球运动到最低点与物块碰撞前所受拉力的大小;
(2)求小球与物块碰撞后的瞬间,物块速度的大小;
(3)为使物块能进入圆弧轨道,且在上升阶段不脱离小车,求物块与水平轨道间的动摩擦因数的取值范围。
【答案】(1)6N;(2)4m/s;(3)
【详解】(1)对小球摆动到最低点的过程中,由动能定理
解得
在最低点,对小球由牛顿第二定律
解得,小球运动到最低点与物块碰撞前所受拉力的大小为
(2)小球与物块碰撞过程中,由动量守恒定律和机械能守恒定律
解得小球与物块碰撞后的瞬间,物块速度的大小为
(3)若物块恰好运动到圆弧轨道的最低点,此时两者共速,则对物块与小车整体由水平方向动量守恒
由能量守恒定律
解得
若物块恰好运动到与圆弧圆心等高的位置,此时两者共速,则对物块与小车整体由水平方向动量守恒
由能量守恒定律
解得
综上所述物块与水平轨道间的动摩擦因数的取值范围为
34.(2024·辽宁)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J
【详解】(1)对A物块由平抛运动知识得
代入数据解得,脱离弹簧时A的速度大小为
AB物块质量相等,同时受到大小相等方向相反的弹簧弹力及大小相等方向相反的摩擦力,则AB物块整体动量守恒,则
解得脱离弹簧时B的速度大小为
(2)对物块B由动能定理
代入数据解得,物块与桌面的动摩擦因数为
(3)弹簧的弹性势能转化为AB物块的动能及这个过程中克服摩擦力所做的功,即
其中,
解得整个过程中,弹簧释放的弹性势能
35.(2024·浙江)某固定装置的竖直截面如图所示,由倾角的直轨道,半径的圆弧轨道,长度、倾角为的直轨道,半径为R、圆心角为的圆弧管道组成,轨道间平滑连接。在轨道末端F的右侧光滑水平面上紧靠着质量滑块b,其上表面与轨道末端F所在的水平面平齐。质量的小物块a从轨道上高度为h静止释放,经圆弧轨道滑上轨道,轨道由特殊材料制成,小物块a向上运动时动摩擦因数,向下运动时动摩擦因数,且最大静摩擦力等于滑动摩擦力。当小物块a在滑块b上滑动时动摩擦因数恒为,小物块a运动到滑块右侧的竖直挡板能发生完全弹性碰撞。(其它轨道均光滑,小物块视为质点,不计空气阻力,,)
(1)若,求小物块
①第一次经过C点的向心加速度大小;
②在上经过的总路程;
③在上向上运动时间和向下运动时间之比。
(2)若,滑块至少多长才能使小物块不脱离滑块。
【答案】(1)①16m/s2;②2m;③1∶2;(2)0.2m
【详解】(1)①对小物块a从A到第一次经过C的过程,根据机械能守恒定律有
第一次经过C点的向心加速度大小为
②小物块a在DE上时,因为
所以小物块a每次在DE上升至最高点后一定会下滑,之后经过若干次在DE上的滑动使机械能损失,最终小物块a将在B、D间往复运动,且易知小物块每次在DE上向上运动和向下运动的距离相等,设其在上经过的总路程为s,根据功能关系有
解得
③根据牛顿第二定律可知小物块a在DE上向上运动和向下运动的加速度大小分别为
将小物块a在DE上的若干次运动等效看作是一次完整的上滑和下滑,则根据运动学公式有
解得
(2)对小物块a从A到F的过程,根据动能定理有
解得
设滑块长度为l时,小物块恰好不脱离滑块,且此时二者达到共同速度v,根据动量守恒定律和能量守恒定律有
解得
36.(2023·河北)如图,质量为的薄木板静置于光滑水平地面上,半径为的竖直光滑圆弧轨道固定在地面,轨道底端与木板等高,轨道上端点和圆心连线与水平面成角.质量为的小物块以的初速度从木板左端水平向右滑行,与木板间的动摩擦因数为0.5.当到达木板右端时,木板恰好与轨道底端相碰并被锁定,同时沿圆弧切线方向滑上轨道.待离开轨道后,可随时解除木板锁定,解除锁定时木板的速度与碰撞前瞬间大小相等、方向相反.已知木板长度为取取.
(1)求木板与轨道底端碰撞前瞬间,物块和木板的速度大小;
(2)求物块到达圆弧轨道最高点时受到轨道的弹力大小及离开轨道后距地面的最大高度;
(3)物块运动到最大高度时会炸裂成质量比为的物块和物块,总质量不变,同时系统动能增加,其中一块沿原速度方向运动.为保证之一落在木板上,求从物块离开轨道到解除木板锁定的时间范围.
【答案】(1),;(2),;(3)或
【详解】(1)设物块的初速度为,木板与轨道底部碰撞前,物块和木板的速度分别为和,物块和木板的质量分别为和,物块与木板间的动摩擦因数为,木板长度为,由动量守恒定律和功能关系有
由题意分析,联立式得
(2)设圆弧轨道半径为,物块到圆弧轨道最高点时斜抛速度为,轨道对物块的弹力为.物块从轨道最低点到最高点,根据动能定理有
物块到达圆弧轨道最高点时,根据牛顿第二定律有
联立式,得
设物块拋出时速度的水平和竖直分量分别为和,
斜抛过程物块上升时间
该段时间物块向左运动距离为.
物块距离地面最大高度.
(3)物块从最高点落地时间
设向左为正方向,物块在最高点炸裂为,设质量和速度分别为和、,设,系统动能增加.根据动量守恒定律和能量守恒定律得
解得或.
设从物块离开轨道到解除木板锁定的时间范围:
(a)若,炸裂后落地过程中的水平位移为
炸裂后落地过程中的水平位移为
木板右端到轨道底端的距离为
运动轨迹分析如下
为了保证之一落在木板上,需要满足下列条件之一
Ⅰ.若仅落在木板上,应满足

解得
Ⅱ.若仅落在木板上,应满足

不等式无解;
(b)若,炸裂后落地过程中水平位移为0,炸裂后落地过程中水平位移为
木板右端到轨道底端的距离为
运动轨迹分析如下
为了保证之一落在木板上,需要满足下列条件之一
Ⅲ.若仅落在木板上,应满足

解得
Ⅳ.若仅落在木板上,应满足

解得.
综合分析(a)(b)两种情况,为保证之一一定落在木板上,满足的条件为或
37.(2023·重庆)如图所示,桌面上固定有一半径为R的水平光滑圆轨道,M、N为轨道上的两点,且位于同一直径上,P为MN段的中点。在P点处有一加速器(大小可忽略),小球每次经过P点后,其速度大小都增加v0。质量为m的小球1从N处以初速度v0沿轨道逆时针运动,与静止在M处的小球2发生第一次弹性碰撞,碰后瞬间两球速度大小相等。忽略每次碰撞时间。求:
(1)球1第一次经过P点后瞬间向心力的大小;
(2)球2的质量;
(3)两球从第一次碰撞到第二次碰撞所用时间。

【答案】(1);(2)3m;(3)
【详解】(1)球1第一次经过P点后瞬间速度变为2v0,所以
(2)球1与球2发生弹性碰撞,且碰后速度大小相等,说明球1碰后反弹,则
联立解得,
(3)设两球从第一次碰撞到第二次碰撞所用时间为Δt,则
所以
38.(2023·广东)如图为某药品自动传送系统的示意图.该系统由水平传送带、竖直螺旋滑槽和与滑槽平滑连接的平台组成,滑槽高为,平台高为。药品盒A、B依次被轻放在以速度匀速运动的传送带上,在与传送带达到共速后,从点进入滑槽,A刚好滑到平台最右端点停下,随后滑下的B以的速度与A发生正碰,碰撞时间极短,碰撞后A、B恰好落在桌面上圆盘内直径的两端。已知A、B的质量分别为和,碰撞过程中损失的能量为碰撞前瞬间总动能的。与传送带间的动摩擦因数为,重力加速度为g,AB在滑至N点之前不发生碰撞,忽略空气阻力和圆盘的高度,将药品盒视为质点。求:

(1)A在传送带上由静止加速到与传送带共速所用的时间;
(2)B从点滑至点的过程中克服阻力做的功;
(3)圆盘的圆心到平台右端点的水平距离.
【答案】(1)(2);(3)
【详解】(1)A在传送带上运动时的加速度
由静止加速到与传送带共速所用的时间
(2)B从点滑至点的过程中克服阻力做的功
(3)AB碰撞过程由动量守恒定律和能量关系可知
解得,(另一组舍掉)
两物体平抛运动的时间
则,
解得
39.(2023·天津)质量的物体A自距地面高度自由落下,与此同时质量的物体B由地面竖直上抛,经过与A碰撞,碰后两物体粘在一起,碰撞时间极短,忽略空气阻力。两物体均可视为质点,重力加速度,求A、B:
(1)碰撞位置与地面的距离x;
(2)碰撞后瞬时的速度大小v;
(3)碰撞中损失的机械能。
【答案】(1)1m;(2)0;(3)12J
【详解】(1)对物体A,根据运动学公式可得
(2)设B物体从地面竖直上抛的初速度为,根据运动学公式可知

解得
可得碰撞前A物体的速度,方向竖直向下;
碰撞前B物体的速度,方向竖直向上;
选向下为正方向,由动量守恒可得
解得碰后速度
(3)根据能量守恒可知碰撞损失的机械能
40.(2023·北京)如图所示,质量为m的小球A用一不可伸长的轻绳悬挂在O点,在O点正下方的光滑桌面上有一个与A完全相同的静止小球B,B距O点的距离等于绳长L。现将A拉至某一高度,由静止释放,A以速度v在水平方向和B发生正碰并粘在一起。重力加速度为g。求:
(1)A释放时距桌面的高度H;
(2)碰撞前瞬间绳子的拉力大小F;
(3)碰撞过程中系统损失的机械能。

【答案】(1);(2);(3)
【详解】(1)A释放到与B碰撞前,根据动能定理得
解得
(2)碰前瞬间,对A由牛顿第二定律得
解得
(3)A、B碰撞过程中,根据动量守恒定律得
解得
则碰撞过程中损失的机械能为
41.(2023·山东)如图所示,物块A和木板B置于水平地面上,固定光滑弧形轨道末端与B的上表面所在平面相切,竖直挡板P固定在地面上。作用在A上的水平外力,使A与B以相同速度向右做匀速直线运动。当B的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C恰好到达最低点,并以水平速度v滑上B的上表面,同时撤掉外力,此时B右端与P板的距离为s。已知,,,,A与地面间无摩擦,B与地面间动摩擦因数,C与B间动摩擦因数,B足够长,使得C不会从B上滑下。B与P、A的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小。
(1)求C下滑的高度H;
(2)与P碰撞前,若B与C能达到共速,且A、B未发生碰撞,求s的范围;
(3)若,求B与P碰撞前,摩擦力对C做的功W;
(4)若,自C滑上B开始至A、B、C三个物体都达到平衡状态,求这三个物体总动量的变化量的大小。

【答案】(1);(2);(3);(4)
【详解】(1)由题意可知滑块C静止滑下过程根据动能定理有
代入数据解得
(2)滑块C刚滑上B时可知C受到水平向左的摩擦力,为
木板B受到C的摩擦力水平向右,为
B受到地面的摩擦力水平向左,为
所以滑块C的加速度为
木板B的加速度为
设经过时间t1,B和C共速,有
代入数据解得
木板B的位移
共同的速度
此后B和C共同减速,加速度大小为
设再经过t2时间,物块A恰好撞上木板B,有
整理得
解得,(舍去)
此时B的位移
共同的速度
综上可知满足条件的s范围为
(3)由于
所以可知滑块C与木板B没有共速,对于木板B,根据运动学公式有
整理后有
解得,(舍去)
滑块C在这段时间的位移
所以摩擦力对C做的功
(4)因为木板B足够长,最后的状态一定会是C与B静止,物块A向左匀速运动。木板B向右运动0.48m时,有
此时A、B之间的距离为
由于B与挡板发生碰撞不损失能量,故将原速率反弹。接着B向左做匀减速运动,可得加速度大小
物块A和木板B相向运动,设经过t3时间恰好相遇,则有
整理得
解得,(舍去)
此时有,方向向左;
,方向向右。
接着A、B发生弹性碰撞,碰前A的速度为v0=1m/s,方向向右,以水平向右为正方向,则有
代入数据解得
而此时
物块A向左的速度大于木板B和C向右的速度,由于摩擦力的作用,最后B和C静止,A向左匀速运动,系统的初动量
末动量
则整个过程动量的变化量
即大小为9.02kg m/s。
42.(2023·浙江)为了探究物体间碰撞特性,设计了如图所示的实验装置。水平直轨道AB、CD和水平传送带平滑无缝连接,两半径均为的四分之一圆周组成的竖直细圆弧管道DEF与轨道CD和足够长的水平直轨道FG平滑相切连接。质量为3m的滑块b与质量为2m的滑块c用劲度系数的轻质弹簧连接,静置于轨道FG上。现有质量的滑块a以初速度从D处进入,经DEF管道后,与FG上的滑块b碰撞(时间极短)。已知传送带长,以的速率顺时针转动,滑块a与传送带间的动摩擦因数,其它摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能(x为形变量)。
(1)求滑块a到达圆弧管道DEF最低点F时速度大小vF和所受支持力大小FN;
(2)若滑块a碰后返回到B点时速度,求滑块a、b碰撞过程中损失的机械能;
(3)若滑块a碰到滑块b立即被粘住,求碰撞后弹簧最大长度与最小长度之差。
【答案】(1)10m/s;31.2;(2)0;(3)0.2m
【详解】(1)滑块a从D到F,由能量关系
在F点
解得
FN=31.2N
(2)滑块a返回B点时的速度vB=1m/s,滑块a一直在传送带上减速,加速度大小为
根据
可得在C点的速度vC=3m/s
则滑块a从碰撞后到到达C点
解得v1=5m/s
因ab碰撞动量守恒,则
解得碰后b的速度v2=5m/s
则碰撞损失的能量
(3)若滑块a碰到滑块b立即被粘住,则ab碰后的共同速度
解得v=2.5m/s
当弹簧被压缩到最短或者伸长到最长时有共同速度

当弹簧被压缩到最短时压缩量为x1,由能量关系
解得
同理当弹簧被拉到最长时伸长量为x2=x1
则弹簧最大长度与最小长度之差
43.(2023·辽宁)如图,质量m1= 1kg的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k = 20N/m的轻弹簧,弹簧处于自然状态。质量m2= 4kg的小物块以水平向右的速度滑上木板左端,两者共速时木板恰好与弹簧接触。木板足够长,物块与木板间的动摩擦因数μ = 0.1,最大静摩擦力等于滑动摩擦力。弹簧始终处在弹性限度内,弹簧的弹性势能Ep与形变量x的关系为。取重力加速度g = 10m/s2,结果可用根式表示。
(1)求木板刚接触弹簧时速度的大小及木板运动前右端距弹簧左端的距离x1;
(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x2及此时木板速度v2的大小;
(3)已知木板向右运动的速度从v2减小到0所用时间为t0。求木板从速度为v2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能U(用t0表示)。

【答案】(1)1m/s;0.125m;(2)0.25m;;(3)
【详解】(1)由于地面光滑,则m1、m2组成的系统动量守恒,则有m2v0= (m1+m2)v1
代入数据有v1= 1m/s
对m1受力分析有
则木板运动前右端距弹簧左端的距离有v12= 2a1x1
代入数据解得x1= 0.125m
(2)木板与弹簧接触以后,对m1、m2组成的系统有kx = (m1+m2)a共
对m2有a2= μg = 1m/s2
当a共 = a2时物块与木板之间即将相对滑动,解得此时的弹簧压缩量x2= 0.25m
对m1、m2组成的系统列动能定理有
代入数据有
(3)木板从速度为v2时到之后与物块加速度首次相同时的过程中,由于木板即m1的加速度大于木块m2的加速度,则当木板与木块的加速度相同时即弹簧形变量为x2时,则说明此时m1的速度大小为v2,共用时2t0,且m2一直受滑动摩擦力作用,则对m2有-μm2g 2t0= m2v3-m2v2
解得
则对于m1、m2组成的系统有
U = Wf
联立有
44.(2023·江苏)如图所示,滑雪道AB由坡道和水平道组成,且平滑连接,坡道倾角均为45°。平台BC与缓冲坡CD相连。若滑雪者从P点由静止开始下滑,恰好到达B点。滑雪者现从A点由静止开始下滑,从B点飞出。已知A、P间的距离为d,滑雪者与滑道间的动摩擦因数均为,重力加速度为g,不计空气阻力。
(1)求滑雪者运动到P点的时间t;
(2)求滑雪者从B点飞出的速度大小v;
(3)若滑雪者能着陆在缓冲坡CD上,求平台BC的最大长度L。

【答案】(1);(2);(3)
【详解】(1)滑雪者从A到P根据动能定理有
根据动量定理有
联立解得,
(2)由于滑雪者从P点由静止开始下滑,恰好到达B点,故从P点到B点合力做功为0,所以当从A点下滑时,到达B点有
(3)当滑雪者刚好落在C点时,平台BC的长度最大;滑雪者从B点飞出做斜抛运动,竖直方向上有
水平方向上有
联立可得
45.(2023·湖南)如图,质量为的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为和,长轴水平,短轴竖直.质量为的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系,椭圆长轴位于轴上。整个过程凹槽不翻转,重力加速度为。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;
(2)在平面直角坐标系中,求出小球运动的轨迹方程;
(3)若,求小球下降高度时,小球相对于地面的速度大小(结果用及表示)。
【答案】(1),;(2);(3)
【详解】(1)小球运动到最低点的时候小球和凹槽水平方向系统动量守恒,取向左为正,
小球运动到最低点的过程中系统机械能守恒
联立解得
因水平方向在任何时候都动量守恒即
两边同时乘t可得
且由几何关系可知
联立得
(2)小球向左运动过程中凹槽向右运动,当小球的坐标为时,此时凹槽水平向右运动的位移为,根据上式有
则小球现在在凹槽所在的椭圆上,根据数学知识可知此时的椭圆方程为
整理得 ()
(3)将代入小球的轨迹方程化简可得
即此时小球的轨迹为以为圆心,b为半径的圆,则当小球下降的高度为时有如图


此时可知速度和水平方向的夹角为,小球下降的过程中,系统水平方向动量守恒
系统机械能守恒
联立得
46.(2023·全国)如图,一竖直固定的长直圆管内有一质量为M的静止薄圆盘,圆盘与管的上端口距离为l,圆管长度为。一质量为的小球从管的上端口由静止下落,并撞在圆盘中心,圆盘向下滑动,所受滑动摩擦力与其所受重力大小相等。小球在管内运动时与管壁不接触,圆盘始终水平,小球与圆盘发生的碰撞均为弹性碰撞且碰撞时间极短。不计空气阻力,重力加速度大小为g。求
(1)第一次碰撞后瞬间小球和圆盘的速度大小;
(2)在第一次碰撞到第二次碰撞之间,小球与圆盘间的最远距离;
(3)圆盘在管内运动过程中,小球与圆盘碰撞的次数。

【答案】(1)小球速度大小,圆盘速度大小;(2)l;(3)4
【详解】(1)过程1:小球释放后自由下落,下降,根据机械能守恒定律
解得
过程2:小球以与静止圆盘发生弹性碰撞,根据能量守恒定律和动量守恒定律分别有
解得
即小球碰后速度大小,方向竖直向上,圆盘速度大小为,方向竖直向下;
(2)第一次碰后,小球做竖直上抛运动,圆盘摩擦力与重力平衡,匀速下滑,所以只要圆盘下降速度比小球快,二者间距就不断增大,当二者速度相同时,间距最大,即
解得
根据运动学公式得最大距离为
(3)第一次碰撞后到第二次碰撞时,两者位移相等,则有

解得
此时小球的速度
圆盘的速度仍为,这段时间内圆盘下降的位移
之后第二次发生弹性碰撞,根据动量守恒
根据能量守恒
联立解得,
同理可得当位移相等时,
解得
圆盘向下运动
此时圆盘距下端管口13l,之后二者第三次发生碰撞,碰前小球的速度
有动量守恒
机械能守恒
得碰后小球速度为
圆盘速度
当二者即将四次碰撞时x盘3= x球3


在这段时间内,圆盘向下移动
此时圆盘距离下端管口长度为20l-1l-2l-4l-6l = 7l
此时可得出圆盘每次碰后到下一次碰前,下降距离逐次增加2l,故若发生下一次碰撞,圆盘将向下移动x盘4= 8l
则第四次碰撞后落出管口外,因此圆盘在管内运动的过程中,小球与圆盘的碰撞次数为4次。
47.(2023·浙江)一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角的直轨道、螺旋圆形轨道,倾角的直轨道、水平直轨道组成,除段外各段轨道均光滑,且各处平滑连接。螺旋圆形轨道与轨道、相切于处.凹槽底面水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁处,摆渡车上表面与直轨道、平台位于同一水平面。已知螺旋圆形轨道半径,B点高度为,长度,长度,摆渡车长度、质量。将一质量也为的滑块从倾斜轨道上高度处静止释放,滑块在段运动时的阻力为其重力的0.2倍。(摆渡车碰到竖直侧壁立即静止,滑块视为质点,不计空气阻力,,)
(1)求滑块过C点的速度大小和轨道对滑块的作用力大小;
(2)摆渡车碰到前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数;
(3)在(2)的条件下,求滑块从G到J所用的时间。
【答案】(1),;(2);(3)
【详解】(1)滑块从静止释放到C点过程,根据动能定理可得
解得
滑块过C点时,根据牛顿第二定律可得
解得
(2)设滑块刚滑上摆渡车时的速度大小为,从静止释放到G点过程,根据动能定理可得
解得
摆渡车碰到前,滑块恰好不脱离摆渡车,说明滑块到达摆渡车右端时刚好与摆渡车共速,以滑块和摆渡车为系统,根据系统动量守恒可得
解得
根据能量守恒可得
解得
(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为
所用时间为
此过程滑块通过的位移为
滑块与摆渡车共速后,滑块与摆渡车一起做匀速直线运动,该过程所用时间为
则滑块从G到J所用的时间为
48.(2022·天津)冰壶是冬季奥运会上非常受欢迎的体育项目。如图所示,运动员在水平冰面上将冰壶A推到M点放手,此时A的速度,匀减速滑行到达N点时,队友用毛刷开始擦A运动前方的冰面,使A与间冰面的动摩擦因数减小,A继续匀减速滑行,与静止在P点的冰壶B发生正碰,碰后瞬间A、B的速度分别为和。已知A、B质量相同,A与间冰面的动摩擦因数,重力加速度取,运动过程中两冰壶均视为质点,A、B碰撞时间极短。求冰壶A
(1)在N点的速度的大小;
(2)与间冰面的动摩擦因数。
【答案】(1);(2)
【详解】(1)设冰壶质量为,A受到冰面的支持力为,由竖直方向受力平衡,有
设A在间受到的滑动摩擦力为,则有
设A在间的加速度大小为,由牛顿第二定律可得
联立解得
由速度与位移的关系式,有
代入数据解得
(2)设碰撞前瞬间A的速度为,由动量守恒定律可得
解得
设A在间受到的滑动摩擦力为,则有
由动能定理可得
联立解得
49.(2022·福建)如图,L形滑板A静置在粗糙水平面上,滑板右端固定一劲度系数为的轻质弹簧,弹簧左端与一小物块B相连,弹簧处于原长状态。一小物块C以初速度从滑板最左端滑入,滑行后与B发生完全非弹性碰撞(碰撞时间极短),然后一起向右运动;一段时间后,滑板A也开始运动.已知A、B、C的质量均为,滑板与小物块、滑板与地面之间的动摩擦因数均为,重力加速度大小为;最大静摩擦力近似等于滑动摩擦力,弹簧始终处于弹性限度内。求:
(1)C在碰撞前瞬间的速度大小;
(2)C与B碰撞过程中损失的机械能;
(3)从C与B相碰后到A开始运动的过程中,C和B克服摩擦力所做的功。
【答案】(1) ;(2) ;(3)
【详解】(1)小物块C运动至刚要与物块B相碰过程,根据动能定理可得
解得C在碰撞前瞬间的速度大小为
(2)物块B、C碰撞过程,根据动量守恒可得
解得物块B与物块C碰后一起运动的速度大小为
故C与B碰撞过程中损失的机械能为
(3)滑板A刚要滑动时,对滑板A,由受力平衡可得
解得弹簧的压缩量,即滑板A开始运动前物块B和物块C一起运动的位移大小为
从C与B相碰后到A开始运动的过程中,C和B克服摩擦力所做的功为
50.(2022·北京)体育课上,甲同学在距离地面高处将排球击出,球的初速度沿水平方向,大小为;乙同学在离地处将排球垫起,垫起前后球的速度大小相等,方向相反。已知排球质量,取重力加速度。不计空气阻力。求:
(1)排球被垫起前在水平方向飞行的距离x;
(2)排球被垫起前瞬间的速度大小v及方向;
(3)排球与乙同学作用过程中所受冲量的大小I。
【答案】(1);(2),方向与水平方向夹角;(3)
【详解】(1)设排球在空中飞行的时间为t,则
解得;则排球在空中飞行的水平距离
(2)乙同学垫起排球前瞬间排球在竖直方向速度的大小
得;根据
得;设速度方向与水平方向夹角为(如答图所示)
则有
(3)根据动量定理,排球与乙同学作用过程中所受冲量的大小
51.(2022·海南)有一个角度可变的轨道,当倾角为时,A恰好匀速下滑,现将倾角调为,从高为h的地方从静止下滑,过一段时间无碰撞地进入光滑水平面,与B发生弹性正碰,B被一根绳子悬挂,与水平面接触但不挤压,碰后B恰好能做完整的圆周运动,已知A的质量是B质量的3倍,求:
①A与轨道间的动摩擦因数;
②A与B刚碰完B的速度大小;
③绳子的长度L。
【答案】①;②;③0.6h
【详解】①倾角为时匀速运动,根据平衡条件有

②③A从高为h的地方滑下后速度为,根据动能定理有
A与B碰撞后速度分别为和,根据动量守恒、能量守恒有,
B到达最高点速度为,根据牛顿第二定律有
根据能量守恒有
解得,
52.(2022·湖北)打桩机是基建常用工具。某种简易打桩机模型如图所示,重物A、B和C通过不可伸长的轻质长绳跨过两个光滑的等高小定滑轮连接,C与滑轮等高(图中实线位置)时,C到两定滑轮的距离均为L。重物A和B的质量均为m,系统可以在如图虚线位置保持静止,此时连接C的绳与水平方向的夹角为60°。某次打桩时,用外力将C拉到图中实线位置,然后由静止释放。设C的下落速度为时,与正下方质量为2m的静止桩D正碰,碰撞时间极短,碰撞后C的速度为零,D竖直向下运动距离后静止(不考虑C、D再次相碰)。A、B、C、D均可视为质点。
(1)求C的质量;
(2)若D在运动过程中受到的阻力F可视为恒力,求F的大小;
(3)撤掉桩D,将C再次拉到图中实线位置,然后由静止释放,求A、B、C的总动能最大时C的动能。
【答案】(1);(2)6.5mg;(3)
【详解】(1)系统在如图虚线位置保持静止,以C为研究对象,根据平衡条件可知
解得
(2)CD碰后C的速度为零,设碰撞后D的速度v,根据动量守恒定律可知
解得
CD碰撞后D向下运动 距离后停止,根据动能定理可知
解得F=6.5mg
(3)设某时刻C向下运动的速度为v′,AB向上运动的速度为v,图中虚线与竖直方向的夹角为α,根据机械能守恒定律可知

对上式求导数可得
当时解得

此时
于是有
解得
此时C的最大动能为
53.(2022·广东)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态。当滑块从A处以初速度为向上滑动时,受到滑杆的摩擦力f为,滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动。已知滑块的质量,滑杆的质量,A、B间的距离,重力加速度g取,不计空气阻力。求:
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小和;
(2)滑块碰撞前瞬间的速度大小v1;
(3)滑杆向上运动的最大高度h。
【答案】(1),;(2);(3)
【详解】(1)当滑块处于静止时桌面对滑杆的支持力等于滑块和滑杆的重力,即
当滑块向上滑动过程中受到滑杆的摩擦力为1N,根据牛顿第三定律可知滑块对滑杆的摩擦力也为1N,方向竖直向上,则此时桌面对滑杆的支持力为
(2)滑块向上运动到碰前瞬间根据动能定理有
代入数据解得。
(3)由于滑块和滑杆发生完全非弹性碰撞,即碰后两者共速,碰撞过程根据动量守恒有
碰后滑块和滑杆以速度v整体向上做竖直上抛运动,根据动能定理有
代入数据联立解得。
54.(2022·河北)如图,光滑水平面上有两个等高的滑板A和B,质量分别为和,A右端和B左端分别放置物块C、D,物块质量均为,A和C以相同速度向右运动,B和D以相同速度向左运动,在某时刻发生碰撞,作用时间极短,碰撞后C与D粘在一起形成一个新滑块,A与B粘在一起形成一个新滑板,物块与滑板之间的动摩擦因数均为。重力加速度大小取。
(1)若,求碰撞后瞬间新物块和新滑板各自速度的大小和方向;
(2)若,从碰撞后到新滑块与新滑板相对静止时,求两者相对位移的大小。
【答案】(1),,方向均向右;(2)
【详解】(1)物块C、D碰撞过程中满足动量守恒,设碰撞后物块C、D形成的新物块的速度为,C、D的质量均为,以向右方向为正方向,则有
解得
可知碰撞后滑块C、D形成的新滑块的速度大小为,方向向右。
滑板A、B碰撞过程中满足动量守恒,设碰撞后滑板A、B形成的新滑板的速度为,滑板A和B质量分别为和,则由
解得
则新滑板速度方向也向右。
(2)若,可知碰后瞬间物块C、D形成的新物块的速度为
碰后瞬间滑板A、B形成的新滑板的速度为
可知碰后新物块相对于新滑板向右运动,新物块向右做匀减速运动,新滑板向右做匀加速运动,设新物块的质量为,新滑板的质量为,相对静止时的共同速度为,根据动量守恒可得
解得
根据能量守恒可得
解得
55.(2022·湖南)如图(a),质量为m的篮球从离地H高度处由静止下落,与地面发生一次非弹性碰撞后反弹至离地h的最高处。设篮球在运动过程中所受空气阻力的大小是篮球所受重力的倍(为常数且),且篮球每次与地面碰撞的碰后速率与碰前速率之比相同,重力加速度大小为g。
(1)求篮球与地面碰撞的碰后速率与碰前速率之比;
(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,使得篮球与地面碰撞一次后恰好反弹至h的高度处,力F随高度y的变化如图(b)所示,其中已知,求的大小;
(3)篮球从H高度处由静止下落后,每次反弹至最高点时,运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,经过N次拍击后篮球恰好反弹至H高度处,求冲量I的大小。
【答案】(1);(2);(3)
【详解】(1)篮球下降过程中根据牛顿第二定律有
再根据匀变速直线运动的公式,下落的过程中有
篮球反弹后上升过程中根据牛顿第二定律有
再根据匀变速直线运动的公式,上升的过程中有
则篮球与地面碰撞的碰后速率与碰前速率之比
(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,则篮球下落过程中根据动能定理有
篮球反弹后上升过程中根据动能定理有
联立解得
(3)方法一:由(1)问可知篮球上升和下降过程中的加速度分别为
(方向向下)
(方向向下)
由题知运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,由于拍击时间极短,则重力的冲量可忽略不计,则根据动量定理有
即每拍击一次篮球将给它一个速度v。
拍击第1次下降过程有
上升过程有
代入k后,下降过程有
上升过程有
联立有
拍击第2次,同理代入k后,下降过程有
上升过程有
联立有
再将h1代入h2有
拍击第3次,同理代入k后,下降过程有
上升过程有
联立有
再将h2代入h3有
直到拍击第N次,同理代入k后,下降过程有
上升过程有
联立有
将hN-1代入hN有
其中,
则有

方法二:由(1)问可知篮球上升和下降过程中的加速度分别为
(方向向下)
(方向向下)
由题知运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,由于拍击时间极短,则重力的冲量可忽略不计,则根据动量定理有
即每拍击一次篮球将给它一个速度v’。设篮球从H下落时,速度为,反弹高度为,篮球受到冲量I后速度为v’,落地时速度为,则,
联立可得
代入k可得,……①
篮球再次反弹,反弹速度为k,设反弹高度为h1,受到冲量后,落地速度为v2,同理可得,
同理化简可得……②
篮球第三次反弹,反弹速度为k,设反弹高度为h2,受到冲量后,落地速度为v3,同理可得,
同理化简可得……③
……
第N次反弹可得……(N)
对式子①②③……(N)两侧分别乘以、、……、,再相加可得

其中,,,可得
可得冲量I的大小
56.(2022·山东)如图所示,“L”型平板B静置在地面上,小物块A处于平板B上的点,点左侧粗糙,右侧光滑。用不可伸长的轻绳将质量为M的小球悬挂在点正上方的O点,轻绳处于水平拉直状态。将小球由静止释放,下摆至最低点与小物块A发生碰撞,碰后小球速度方向与碰前方向相同,开始做简谐运动(要求摆角小于),A以速度沿平板滑动直至与B右侧挡板发生弹性碰撞。一段时间后,A返回到O点的正下方时,相对于地面的速度减为零,此时小球恰好第一次上升到最高点。已知A的质量,B的质量,A与B的动摩擦因数,B与地面间的动摩擦因数,取重力加速度。整个过程中A始终在B上,所有碰撞时间忽略不计,不计空气阻力,求:
(1)A与B的挡板碰撞后,二者的速度大小与;
(2)B光滑部分的长度d;
(3)运动过程中A对B的摩擦力所做的功;
(4)实现上述运动过程,的取值范围(结果用表示)。
【答案】(1),;(2);(3);(4)
【详解】(1)设水平向右为正方向,因为点右侧光滑,由题意可知A与B发生弹性碰撞,故碰撞过程根据动量守恒和能量守恒有
代入数据联立解得
,(方向水平向左)
,(方向水平向右)
即A和B速度的大小分别为,。
(2)如图所示为A与B挡板碰撞后到运动至O点正下方的运动示意图
A回到前,A在B上匀速直线运动的时间设为。A的位移大小
对平板B,由牛顿第二定律得
对平板B,由运动学公式有
由几何关系①
A从回到O点正下方设时间为,A在B上做匀减速直线运动,设A的加速度大小为,由牛顿第二定律得
解得
A返回到O点的正下方时,相对于地面的速度减为零,则
时间内A相对于地面的位移大小
由几何关系②
联立解得或,
由①②可得与等大
分析可知,A回到O点正下方时B未减速为0,故
舍去。综上解得
(3)在A刚开始减速时,B物体的速度为
在A减速过程中,对B分析根据牛顿运动定律可知
解得
B物体停下来的时间为t3,则有
解得
可知在A减速过程中B先停下来了,此过程中B的位移为
所以A对B的摩擦力所做的功为
(4)小球和A碰撞后A做匀速直线运动再和B相碰,此过程有
由题意可知A返回到O点的正下方时,小球恰好第一次上升到最高点,设小球做简谐振动的周期为T,摆长为L,则有
由单摆周期公式解得,小球到悬挂点O点的距离
小球下滑过程根据动能定理有
当碰后小球摆角恰为5°时,有
解得,
小球与A碰撞过程根据动量守恒定律有
小球与A碰后小球速度方向与碰前方向相同,开始做简谐运动(要求摆角小于),则要求
故要实现这个过程的范围为
57.(2022·全国)如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上:物块B向A运动,时与弹簧接触,到时与弹簧分离,第一次碰撞结束,A、B的图像如图(b)所示。已知从到时间内,物块A运动的距离为。A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同。斜面倾角为,与水平面光滑连接。碰撞过程中弹簧始终处于弹性限度内。求
(1)第一次碰撞过程中,弹簧弹性势能的最大值;
(2)第一次碰撞过程中,弹簧压缩量的最大值;
(3)物块A与斜面间的动摩擦因数。
【答案】(1);(2);(3)
【详解】(1)当弹簧被压缩最短时,弹簧弹性势能最大,此时、速度相等,即时刻,根据动量守恒定律
根据能量守恒定律
联立解得,
(2)解法一:同一时刻弹簧对、B的弹力大小相等,根据牛顿第二定律
可知同一时刻
则同一时刻、的瞬时速度分别为,
根据位移等速度在时间上的累积可得,

解得
第一次碰撞过程中,弹簧压缩量的最大值
解法二:B接触弹簧后,压缩弹簧的过程中,A、B动量守恒,有
对方程两边同时乘以时间,有
0-t0之间,根据位移等速度在时间上的累积,可得
将代入可得
则第一次碰撞过程中,弹簧压缩量的最大值
(3)物块A第二次到达斜面的最高点与第一次相同,说明物块A第二次与B分离后速度大小仍为,方向水平向右,设物块A第一次滑下斜面的速度大小为,设向左为正方向,根据动量守恒定律可得
根据能量守恒定律可得
联立解得
方法一:设在斜面上滑行的长度为,上滑过程,根据动能定理可得
下滑过程,根据动能定理可得
联立解得
方法二:根据牛顿第二定律,可以分别计算出滑块A上滑和下滑时的加速度,,
上滑时末速度为0,下滑时初速度为0,由匀变速直线运动的位移速度关系可得,
联立可解得
58.(2024·上海)引力场中的运动
包括太阳、地球在内的所有物体都会在其周围产生引力场。在不同尺度的空间,引力场中的物体运动具有不同的表象。牛顿揭示了苹果下落和行星运动共同的物理机制。意味着天上的物理和地上的物理是一样的,物理规律的普适性反映了一种简单的美。
72.如图,小球a通过轻质细线Ⅰ,Ⅱ悬挂,处于静止状态。线Ⅰ长,Ⅰ上端固定于离地的O点,与竖直方向之间夹角;线Ⅱ保持水平。O点正下方有一与a质量相等的小球b,静置于离地高度的支架上。(取,,)
(1)在线Ⅰ,Ⅱ的张力大小,和小球a所受重力大小G中,最大的是 。
(2)烧断线Ⅱ,a运动到最低点时与b发生弹性碰撞。求:
①与b球碰撞前瞬间a球的速度大小;(计算)
②碰撞后瞬间b球的速度大小;(计算)
③b球的水平射程s。(计算)
【答案】
【解析】(1)[1]以小球a为对象,根据受力平衡可得
可知在线Ⅰ,Ⅱ的张力大小,和小球a所受重力大小G中,最大的是。
(2)①[2]由动能定理可得
可得
②[3]由动量守恒定律和能量守恒可得
联立解得
③[4]由平抛运动的规律有

联立解得
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)/ 让教学更有效 2025年高考 | 物理学科
专题07 力学三大观点的综合应用
……………………………………………………………………………………
目录
TOC \o "1-3" \h \z \u 一、考情统计 1
二、应试策略 1
三、真题汇编 2
考向1 力学三大观点的理解与辨析 2
考向2 力学三大观点解决力学综合问题 8
……………………………………………………………………………………
一、考情统计
力学三大观点的理解与辨析 2024 重庆、2024 北京、2024 甘肃、2024 广西、2024 福建、2023 河北、2023 福建、2023 重庆、2023 全国、2023 全国、2022 海南、2022 重庆、2022 湖北、2022 山东、2022 重庆、2022 湖南、2022 全国
力学三大观点解决力学综合问题 2024 安徽、2024 安徽、2024 广东、2024 广西、2024 宁夏四川、2024 天津、2024 贵州、2024 重庆、2024 浙江、2024 甘肃、2024 广东、2024 河北、2024 湖北、2024 湖南、2024 安徽、2024 辽宁、2024 浙江、2024 上海、2023 河北、2023 重庆、2023 广东、2023 天津、2023 北京、2023 山东、2023 浙江、2023 辽宁、2023 江苏、2023 湖南、2023 全国、2023 浙江、2022 北京、2022 天津、2022 福建、2022 北京、2022 海南、2022 湖北、2022 广东、2022 河北、2022 湖南、2022 山东、2022 全国
二、应试策略
1.命题热度角度:本章内容属于高考考查的热点和难点,既有选择题、又有计算题,或与电磁感应等结合。命题趋势是以综合题的形式考查,这类题需要结合牛顿运动定律、功和能等物理观念解决问题,考查考生的综合应用能力,难度也比较大。
2.试题情景:跳水、蹦床、蹦极、火箭发射、无人机、跳伞运动、过山车等能量问题,安全行车(机车碰撞、安全气囊)、交通运输(喷气式飞机)、体育运动(滑冰接力、球类运动)等。
3.备考策略: 复习本章时,备考中把处理综合问题的三大方法——动力学的方法、能量的方法、动量的方法,分类复习掌握,重点掌握对以下知识点:①牛顿运动定律结合运动学公式处理匀变速直线运动的问题;②动能定理结合能量守恒定律处理变力及曲线运动问题;③动量定理结合能量守恒定律、动量守恒定律处理碰撞、反冲类问题。
三、真题汇编
考向1 力学三大观点的理解与辨析
1.(2024·重庆)活检针可用于活体组织取样,如图所示。取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。针鞘质量为m,针鞘在软组织中运动距离d1后进入目标组织,继续运动d2后停下来。若两段运动中针翘鞘整体受到阻力均视为恒力。大小分别为F1、F2,则针鞘( )
A.被弹出时速度大小为
B.到达目标组织表面时的动能为F1d1
C.运动d2过程中,阻力做功为(F1+F2)d2
D.运动d2的过程中动量变化量大小为
2.(2024·北京)将小球竖直向上抛出,小球从抛出到落回原处的过程中,若所受空气阻力大小与速度大小成正比,则下列说法正确的是(  )
A.上升和下落两过程的时间相等
B.上升和下落两过程损失的机械能相等
C.上升过程合力的冲量大于下落过程合力的冲量
D.上升过程的加速度始终小于下落过程的加速度
3.(2023·河北)某科研团队通过传感器收集并分析运动数据,为跳高运动员的技术动作改进提供参考。图为跳高运动员在起跳过程中,其单位质量受到地面的竖直方向支持力随时间变化关系曲线。图像中至内,曲线下方的面积与阴影部分的面积相等。已知该运动员的质量为,重力加速度g取。下列说法正确的是(  )
A.起跳过程中运动员的最大加速度约为
B.起跳后运动员重心上升的平均速度大小约为
C.起跳后运动员重心上升的最大高度约为
D.起跳过程中运动员所受合力的冲量大小约为
4.(2022·海南)在冰上接力比赛时,甲推乙的作用力是,乙对甲的作用力是,则这两个力(  )
A.大小相等,方向相反 B.大小相等,方向相同
C.的冲量大于的冲量 D.的冲量小于的冲量
5.(2022·重庆)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,某小组得到了假人头部所受安全气囊的作用力随时间变化的曲线(如图)。从碰撞开始到碰撞结束过程中,若假人头部只受到安全气囊的作用,则由曲线可知,假人头部( )
A.速度的变化量等于曲线与横轴围成的面积 B.动量大小先增大后减小
C.动能变化正比于曲线与横轴围成的面积 D.加速度大小先增大后减小
6.(2022·湖北)一质点做曲线运动,在前一段时间内速度大小由v增大到2v,在随后的一段时间内速度大小由2v增大到5v。前后两段时间内,合外力对质点做功分别为W1和W2,合外力的冲量大小分别为I1和I2。下列关系式一定成立的是(  )
A. , B. ,
C., D.,
7.(2022·山东)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。如图所示,发射舱内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。从火箭开始运动到点火的过程中( )
A.火箭的加速度为零时,动能最大
B.高压气体释放的能量全部转化为火箭的动能
C.高压气体对火箭推力的冲量等于火箭动量的增加量
D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量
8.(2024·甘肃)(多选)电动小车在水平面内做匀速圆周运动,下列说法正确的是(  )
A.小车的动能不变 B.小车的动量守恒
C.小车的加速度不变 D.小车所受的合外力一定指向圆心
9.(2024·广西)(多选)如图,坚硬的水平地面上放置一木料,木料上有一个竖直方向的方孔,方孔各侧壁完全相同。木栓材质坚硬,形状为正四棱台,上下底面均为正方形,四个侧面完全相同且与上底面的夹角均为。木栓质量为m,与方孔侧壁的动摩擦因数为。将木栓对准方孔,接触但无挤压,锤子以极短时间撞击木栓后反弹,锤子对木栓冲量为I,方向竖直向下。木栓在竖直方向前进了的位移,未到达方孔底部。若进入的过程方孔侧壁发生弹性形变,弹力呈线性变化,最大静摩擦力约等于滑动摩擦力,则(  )
A.进入过程,木料对木栓的合力的冲量为
B.进入过程,木料对木栓的平均阻力大小约为
C.进入过程,木料和木栓的机械能共损失了
D.木栓前进后木料对木栓一个侧面的最大静摩擦力大小约为
10.(2024·福建)(多选)如图(a),水平地面上固定有一倾角为的足够长光滑斜面,一质量为的滑块锁定在斜面上。时解除锁定,同时对滑块施加沿斜面方向的拉力,随时间的变化关系如图(b)所示,取沿斜面向下为正方向,重力加速度大小为,则滑块(  )
A.在内一直沿斜面向下运动
B.在内所受合外力的总冲量大小为零
C.在时动量大小是在时的一半
D.在内的位移大小比在内的小
11.(2023·福建)(多选)甲、乙两辆完全相同的小车均由静止沿同一方向出发做直线运动。以出发时刻为计时零点,甲车的速度—时间图像如图(a)所示,乙车所受合外力—时间图像如图(b)所示。则( )
A.0 ~ 2s内,甲车的加速度大小逐渐增大
B.乙车在t = 2s和t = 6s时的速度相同
C.2 ~ 6s内,甲、乙两车的位移不同
D.t = 8s时,甲、乙两车的动能不同
12.(2023·重庆)(多选)某实验小组测得在竖直方向飞行的无人机飞行高度y随时间t的变化曲线如图所示,E、F、M、N为曲线上的点,EF、MN段可视为两段直线,其方程分别为和。无人机及其载物的总质量为2kg,取竖直向上为正方向。则(  )

A.EF段无人机的速度大小为4m/s
B.FM段无人机的货物处于失重状态
C.FN段无人机和装载物总动量变化量大小为4kg m/s
D.MN段无人机机械能守恒
13.(2023·全国)(多选)一质量为1kg的物体在水平拉力的作用下,由静止开始在水平地面上沿x轴运动,出发点为x轴零点,拉力做的功W与物体坐标x的关系如图所示。物体与水平地面间的动摩擦因数为0.4,重力加速度大小取10m/s2。下列说法正确的是( )

A.在x = 1m时,拉力的功率为6W
B.在x = 4m时,物体的动能为2J
C.从x = 0运动到x = 2m,物体克服摩擦力做的功为8J
D.从x = 0运动到x = 4的过程中,物体的动量最大为2kg m/s
14.(2023·全国)(多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N极正对着乙的S极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等。现同时释放甲和乙,在它们相互接近过程中的任一时刻(  )

A.甲的速度大小比乙的大 B.甲的动量大小比乙的小
C.甲的动量大小与乙的相等 D.甲和乙的动量之和不为零
15.(2022·重庆)(多选)一物块在倾角为的固定斜面上受到方向与斜面平行、大小与摩擦力相等的拉力作用,由静止开始沿斜面向下做匀变速直线运动,物块与斜面间的动摩擦因数处处相同。若拉力沿斜面向下时,物块滑到底端的过程中重力和摩擦力对物块做功随时间的变化分别如图曲线①、②所示,则(  )
A.物块与斜面间的动摩擦因数为
B.当拉力沿斜面向上,重力做功为时,物块动能为
C.当拉力分别沿斜面向上和向下时,物块的加速度大小之比为1∶3
D.当拉力分别沿斜面向上和向下时,物块滑到底端时的动量大小之比为
16.(2022·湖南)(多选)神舟十三号返回舱进入大气层一段时间后,逐一打开引导伞、减速伞、主伞,最后启动反冲装置,实现软着陆。某兴趣小组研究了减速伞打开后返回舱的运动情况,将其运动简化为竖直方向的直线运动,其图像如图所示。设该过程中,重力加速度不变,返回舱质量不变,下列说法正确的是(  )
A.在时间内,返回舱重力的功率随时间减小
B.在时间内,返回舱的加速度不变
C.在时间内,返回舱的动量随时间减小
D.在时间内,返回舱的机械能不变
17.(2022·全国)(多选)质量为的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。已知物块与地面间的动摩擦因数为0.2,重力加速度大小取。则(  )
A.时物块的动能为零
B.时物块回到初始位置
C.时物块的动量为
D.时间内F对物块所做的功为
考向2 力学三大观点解决力学综合问题
18.(2024·安徽)在某装置中的光滑绝缘水平面上,三个完全相同的带电小球,通过不可伸长的绝缘轻质细线,连接成边长为d的正三角形,如图甲所示。小球质量为m,带电量为,可视为点电荷。初始时,小球均静止,细线拉直。现将球1和球2间的细线剪断,当三个小球运动到同一条直线上时,速度大小分别为、、,如图乙所示。该过程中三个小球组成的系统电势能减少了,k为静电力常量,不计空气阻力。则( )
A.该过程中小球3受到的合力大小始终不变 B.该过程中系统能量守恒,动量不守恒
C.在图乙位置,, D.在图乙位置,
19.(2022·北京)“雪如意”是我国首座国际标准跳台滑雪场地。跳台滑雪运动中,裁判员主要根据运动员在空中的飞行距离和动作姿态评分。运动员在进行跳台滑雪时大致经过四个阶段:①助滑阶段,运动员两腿尽量深蹲,顺着助滑道的倾斜面下滑;②起跳阶段,当进入起跳区时,运动员两腿猛蹬滑道快速伸直,同时上体向前伸展;③飞行阶段,在空中运动员保持身体与雪板基本平行、两臂伸直贴放于身体两侧的姿态;④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。下列说法正确的是(  )
A.助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力
B.起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度
C.飞行阶段,运动员所采取的姿态是为了增加水平方向速度
D.着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间
20.(2024·安徽)(多选)一倾角为足够大的光滑斜面固定于水平地面上,在斜面上建立Oxy直角坐标系,如图(1)所示。从开始,将一可视为质点的物块从O点由静止释放,同时对物块施加沿x轴正方向的力和,其大小与时间t的关系如图(2)所示。已知物块的质量为1.2kg,重力加速度g取,不计空气阻力。则( )
A.物块始终做匀变速曲线运动
B.时,物块的y坐标值为2.5m
C.时,物块的加速度大小为
D.时,物块的速度大小为
21.(2024·广东)(多选)如图所示,光滑斜坡上,可视为质点的甲、乙两个相同滑块,分别从、高度同时由静止开始下滑。斜坡与水平面在O处平滑相接,滑块与水平面间的动摩擦因数为,乙在水平面上追上甲时发生弹性碰撞。忽略空气阻力。下列说法正确的有(  )
A.甲在斜坡上运动时与乙相对静止
B.碰撞后瞬间甲的速度等于碰撞前瞬间乙的速度
C.乙的运动时间与无关
D.甲最终停止位置与O处相距
22.(2024·广西)(多选)如图,在光滑平台上有两个相同的弹性小球M和N。M水平向右运动,速度大小为v。M与静置于平台边缘的N发生正碰,碰撞过程中总机械能守恒。若不计空气阻力,则碰撞后,N在(  )
A.竖直墙面上的垂直投影的运动是匀速运动
B.竖直墙面上的垂直投影的运动是匀加速运动
C.水平地面上的垂直投影的运动速度大小等于v
D.水平地面上的垂直投影的运动速度大小大于v
23.(2024·宁夏四川)(多选)蹦床运动中,体重为的运动员在时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示。假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平。忽略空气阻力,重力加速度大小取。下列说法正确的是(  )
A.时,运动员的重力势能最大
B.时,运动员的速度大小为
C.时,运动员恰好运动到最大高度处
D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为
24.(2024·天津)如图所示,光滑半圆轨道直径沿竖直方向,最低点与水平面相切。对静置于轨道最低点的小球A施加水平向左的瞬时冲量I,A沿轨道运动到最高点时,与用轻绳悬挂的静止小球B正碰并粘在一起。已知I = 1.8 N s,A、B的质量分别为mA = 0.3 kg、mB = 0.1 kg,轨道半径和绳长均为R = 0.5 m,两球均视为质点,轻绳不可伸长,重力加速度g取10 m/s2,不计空气阻力。求:
(1)与B碰前瞬间A的速度大小;
(2)A、B碰后瞬间轻绳的拉力大小。
25.(2024·贵州)如图,半径为的四分之一光滑圆轨道固定在竖直平面内,其末端与水平地面相切于P点,的长度。一长为的水平传送带以恒定速率逆时针转动,其右端与地面在M点无缝对接。物块a从圆轨道顶端由静止释放,沿轨道下滑至P点,再向左做直线运动至M点与静止的物块b发生弹性正碰,碰撞时间极短。碰撞后b向左运动到达传送带的左端N时,瞬间给b一水平向右的冲量I,其大小为。以后每隔给b一相同的瞬时冲量I,直到b离开传送带。已知a的质量为的质量为,它们均可视为质点。a、b与地面及传送带间的动摩擦因数均为,取重力加速度大小。求:
(1)a运动到圆轨道底端时轨道对它的支持力大小;
(2)b从M运动到N的时间;
(3)b从N运动到M的过程中与传送带摩擦产生的热量。
26.(2024·重庆)如图所示,M、N两个钉子固定于相距a的两点,M的正下方有不可伸长的轻质细绳,一端固定在M上,另一端连接位于M正下方放置于水平地面质量为m的小木块B,绳长与M到地面的距离均为10a,质量为2m的小木块A,沿水平方向于B发生弹性碰撞,碰撞时间极短,A与地面间摩擦因数为,重力加速为g,忽略空气阻力和钉子直径,不计绳被钉子阻挡和绳断裂时的机械能损失。
(1)若碰后,B在竖直面内做圆周运动,且能经过圆周运动最高点,求B碰后瞬间速度的最小值;
(2)若改变A碰前瞬间的速度,碰后A运动到P点停止,B在竖直面圆周运动旋转2圈,经过M正下方时细绳子断开,B也来到P点,求B碰后瞬间的速度大小;
(3)若拉力达到12mg细绳会断,上下移动N的位置,保持N在M正上方,B碰后瞬间的速度与(2)问中的相同,使B旋转n圈。经过M正下的时细绳断开,求MN之间距离的范围,及在n的所有取值中,B落在地面时水平位移的最小值和最大值。
27.(2024·浙江)一弹射游戏装置竖直截面如图所示,固定的光滑水平直轨道AB、半径为R的光滑螺旋圆形轨道BCD、光滑水平直轨道DE平滑连接。长为L、质量为M的平板紧靠长为d的固定凹槽EFGH侧壁EF放置,平板上表面与DEH齐平。将一质量为m的小滑块从A端弹射,经过轨道BCD后滑上平板并带动平板一起运动,平板到达HG即被锁定。已知R=0.5 m,d=4.4 m,L=1.8 m,M=m=0.1 kg,平板与滑块间的动摩擦因数μ1=0.6、与凹槽水平底面FG间的动摩擦因数为μ2。滑块视为质点,不计空气阻力,最大静摩擦力等于滑动摩擦力,重力加速度。
(1)滑块恰好能通过圆形轨道最高点C时,求滑块离开弹簧时速度v0的大小;
(2)若μ2=0,滑块恰好过C点后,求平板加速至与滑块共速时系统损耗的机械能;
(3)若μ2=0.1,滑块能到达H点,求其离开弹簧时的最大速度vm。
28.(2024·甘肃)如图,质量为2kg的小球A(视为质点)在细绳和OP作用下处于平衡状态,细绳,与竖直方向的夹角均为60°。质量为6kg的木板B静止在光滑水平面上,质量为2kg的物块C静止在B的左端。剪断细绳,小球A开始运动。(重力加速度g取)
(1)求A运动到最低点时细绳OP所受的拉力。
(2)A在最低点时,细绳OP断裂。A飞出后恰好与C左侧碰撞(时间极短)、碰后A竖直下落,C水平向右运动。求碰后C的速度大小。
(3)A、C碰后,C相对B滑行4m后与B共速。求C和B之间的动摩擦因数。
29.(2024·广东)汽车的安全带和安全气囊是有效保护乘客的装置。
(1)安全带能通过感应车的加速度自动锁定,其原理的简化模型如图甲所示。在水平路面上刹车的过程中,敏感球由于惯性沿底座斜面上滑直到与车达到共同的加速度a,同时顶起敏感臂,使之处于水平状态,并卡住卷轴外齿轮,锁定安全带。此时敏感臂对敏感球的压力大小为,敏感球的质量为m,重力加速度为g。忽略敏感球受到的摩擦力。求斜面倾角的正切值。
(2)如图乙所示,在安全气囊的性能测试中,可视为质点的头锤从离气囊表面高度为H处做自由落体运动。与正下方的气囊发生碰撞。以头锤到气囊表面为计时起点,气囊对头锤竖直方向作用力F随时间t的变化规律,可近似用图丙所示的图像描述。已知头锤质量,重力加速度大小取。求:
①碰撞过程中F的冲量大小和方向;
②碰撞结束后头锤上升的最大高度。
30.(2024·河北)如图,三块厚度相同、质量相等的木板A、B、C(上表面均粗糙)并排静止在光滑水平面上,尺寸不计的智能机器人静止于A木板左端。已知三块木板质量均为A木板长度为,机器人质量为,重力加速度g取,忽略空气阻力。
(1)机器人从A木板左端走到A木板右端时,求A、B木板间的水平距离。
(2)机器人走到A木板右端相对木板静止后,以做功最少的方式从A木板右端跳到B木板左端,求起跳过程机器人做的功,及跳离瞬间的速度方向与水平方向夹角的正切值。
(3)若机器人以做功最少的方式跳到B木板左端后立刻与B木板相对静止,随即相对B木板连续不停地3次等间距跳到B木板右端,此时B木板恰好追上A木板。求该时刻A、C两木板间距与B木板长度的关系。
31.(2024·湖北)如图所示,水平传送带以5m/s的速度顺时针匀速转动,传送带左右两端的距离为。传送带右端的正上方有一悬点O,用长为、不可伸长的轻绳悬挂一质量为0.2kg的小球,小球与传送带上表面平齐但不接触。在O点右侧的P点固定一钉子,P点与O点等高。将质量为0.1kg的小物块无初速轻放在传送带左端,小物块运动到右端与小球正碰,碰撞时间极短,碰后瞬间小物块的速度大小为、方向水平向左。小球碰后绕O点做圆周运动,当轻绳被钉子挡住后,小球继续绕P点向上运动。已知小物块与传送带间的动摩擦因数为0.5,重力加速度大小。
(1)求小物块与小球碰撞前瞬间,小物块的速度大小;
(2)求小物块与小球碰撞过程中,两者构成的系统损失的总动能;
(3)若小球运动到P点正上方,绳子不松弛,求P点到O点的最小距离。
32.(2024·湖南)如图,半径为R的圆环水平放置并固定,圆环内有质量为mA和mB的小球A和B(mA>mB)。初始时小球A以初速度v0沿圆环切线方向运动,与静止的小球B发生碰撞。不计小球与圆环之间的摩擦,两小球始终在圆环内运动。
(1)若小球A与B碰撞后结合在一起,求碰撞后小球组合体的速度大小及做圆周运动所需向心力的大小;
(2)若小球A与B之间为弹性碰撞,且所有的碰撞位置刚好位于等边三角形的三个顶点,求小球的质量比。
(3)若小球A与B之间为非弹性碰撞,每次碰撞后的相对速度大小为碰撞前的相对速度大小的e倍(033.(2024·安徽)如图所示,一实验小车静止在光滑水平面上,其上表面有粗糙水平轨道与光滑四分之一圆弧轨道。圆弧轨道与水平轨道相切于圆弧轨道最低点,一物块静止于小车最左端,一小球用不可伸长的轻质细线悬挂于O点正下方,并轻靠在物块左侧。现将细线拉直到水平位置时,静止释放小球,小球运动到最低点时与物块发生弹性碰撞。碰撞后,物块沿着小车上的轨道运动,已知细线长。小球质量。物块、小车质量均为。小车上的水平轨道长。圆弧轨道半径。小球、物块均可视为质点。不计空气阻力,重力加速度g取。
(1)求小球运动到最低点与物块碰撞前所受拉力的大小;
(2)求小球与物块碰撞后的瞬间,物块速度的大小;
(3)为使物块能进入圆弧轨道,且在上升阶段不脱离小车,求物块与水平轨道间的动摩擦因数的取值范围。
34.(2024·辽宁)如图,高度的水平桌面上放置两个相同物块A、B,质量。A、B间夹一压缩量的轻弹簧,弹簧与A、B不栓接。同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程;B脱离弹簧后沿桌面滑行一段距离后停止。A、B均视为质点,取重力加速度。求:
(1)脱离弹簧时A、B的速度大小和;
(2)物块与桌面间的动摩擦因数μ;
(3)整个过程中,弹簧释放的弹性势能。
35.(2024·浙江)某固定装置的竖直截面如图所示,由倾角的直轨道,半径的圆弧轨道,长度、倾角为的直轨道,半径为R、圆心角为的圆弧管道组成,轨道间平滑连接。在轨道末端F的右侧光滑水平面上紧靠着质量滑块b,其上表面与轨道末端F所在的水平面平齐。质量的小物块a从轨道上高度为h静止释放,经圆弧轨道滑上轨道,轨道由特殊材料制成,小物块a向上运动时动摩擦因数,向下运动时动摩擦因数,且最大静摩擦力等于滑动摩擦力。当小物块a在滑块b上滑动时动摩擦因数恒为,小物块a运动到滑块右侧的竖直挡板能发生完全弹性碰撞。(其它轨道均光滑,小物块视为质点,不计空气阻力,,)
(1)若,求小物块
①第一次经过C点的向心加速度大小;
②在上经过的总路程;
③在上向上运动时间和向下运动时间之比。
(2)若,滑块至少多长才能使小物块不脱离滑块。
36.(2023·河北)如图,质量为的薄木板静置于光滑水平地面上,半径为的竖直光滑圆弧轨道固定在地面,轨道底端与木板等高,轨道上端点和圆心连线与水平面成角.质量为的小物块以的初速度从木板左端水平向右滑行,与木板间的动摩擦因数为0.5.当到达木板右端时,木板恰好与轨道底端相碰并被锁定,同时沿圆弧切线方向滑上轨道.待离开轨道后,可随时解除木板锁定,解除锁定时木板的速度与碰撞前瞬间大小相等、方向相反.已知木板长度为取取.
(1)求木板与轨道底端碰撞前瞬间,物块和木板的速度大小;
(2)求物块到达圆弧轨道最高点时受到轨道的弹力大小及离开轨道后距地面的最大高度;
(3)物块运动到最大高度时会炸裂成质量比为的物块和物块,总质量不变,同时系统动能增加,其中一块沿原速度方向运动.为保证之一落在木板上,求从物块离开轨道到解除木板锁定的时间范围.
37.(2023·重庆)如图所示,桌面上固定有一半径为R的水平光滑圆轨道,M、N为轨道上的两点,且位于同一直径上,P为MN段的中点。在P点处有一加速器(大小可忽略),小球每次经过P点后,其速度大小都增加v0。质量为m的小球1从N处以初速度v0沿轨道逆时针运动,与静止在M处的小球2发生第一次弹性碰撞,碰后瞬间两球速度大小相等。忽略每次碰撞时间。求:
(1)球1第一次经过P点后瞬间向心力的大小;
(2)球2的质量;
(3)两球从第一次碰撞到第二次碰撞所用时间。

38.(2023·广东)如图为某药品自动传送系统的示意图.该系统由水平传送带、竖直螺旋滑槽和与滑槽平滑连接的平台组成,滑槽高为,平台高为。药品盒A、B依次被轻放在以速度匀速运动的传送带上,在与传送带达到共速后,从点进入滑槽,A刚好滑到平台最右端点停下,随后滑下的B以的速度与A发生正碰,碰撞时间极短,碰撞后A、B恰好落在桌面上圆盘内直径的两端。已知A、B的质量分别为和,碰撞过程中损失的能量为碰撞前瞬间总动能的。与传送带间的动摩擦因数为,重力加速度为g,AB在滑至N点之前不发生碰撞,忽略空气阻力和圆盘的高度,将药品盒视为质点。求:

(1)A在传送带上由静止加速到与传送带共速所用的时间;
(2)B从点滑至点的过程中克服阻力做的功;
(3)圆盘的圆心到平台右端点的水平距离.
40.(2023·北京)如图所示,质量为m的小球A用一不可伸长的轻绳悬挂在O点,在O点正下方的光滑桌面上有一个与A完全相同的静止小球B,B距O点的距离等于绳长L。现将A拉至某一高度,由静止释放,A以速度v在水平方向和B发生正碰并粘在一起。重力加速度为g。求:
(1)A释放时距桌面的高度H;
(2)碰撞前瞬间绳子的拉力大小F;
(3)碰撞过程中系统损失的机械能。

41.(2023·山东)如图所示,物块A和木板B置于水平地面上,固定光滑弧形轨道末端与B的上表面所在平面相切,竖直挡板P固定在地面上。作用在A上的水平外力,使A与B以相同速度向右做匀速直线运动。当B的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C恰好到达最低点,并以水平速度v滑上B的上表面,同时撤掉外力,此时B右端与P板的距离为s。已知,,,,A与地面间无摩擦,B与地面间动摩擦因数,C与B间动摩擦因数,B足够长,使得C不会从B上滑下。B与P、A的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小。
(1)求C下滑的高度H;
(2)与P碰撞前,若B与C能达到共速,且A、B未发生碰撞,求s的范围;
(3)若,求B与P碰撞前,摩擦力对C做的功W;
(4)若,自C滑上B开始至A、B、C三个物体都达到平衡状态,求这三个物体总动量的变化量的大小。

42.(2023·浙江)为了探究物体间碰撞特性,设计了如图所示的实验装置。水平直轨道AB、CD和水平传送带平滑无缝连接,两半径均为的四分之一圆周组成的竖直细圆弧管道DEF与轨道CD和足够长的水平直轨道FG平滑相切连接。质量为3m的滑块b与质量为2m的滑块c用劲度系数的轻质弹簧连接,静置于轨道FG上。现有质量的滑块a以初速度从D处进入,经DEF管道后,与FG上的滑块b碰撞(时间极短)。已知传送带长,以的速率顺时针转动,滑块a与传送带间的动摩擦因数,其它摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能(x为形变量)。
(1)求滑块a到达圆弧管道DEF最低点F时速度大小vF和所受支持力大小FN;
(2)若滑块a碰后返回到B点时速度,求滑块a、b碰撞过程中损失的机械能;
(3)若滑块a碰到滑块b立即被粘住,求碰撞后弹簧最大长度与最小长度之差。
43.(2023·辽宁)如图,质量m1= 1kg的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k = 20N/m的轻弹簧,弹簧处于自然状态。质量m2= 4kg的小物块以水平向右的速度滑上木板左端,两者共速时木板恰好与弹簧接触。木板足够长,物块与木板间的动摩擦因数μ = 0.1,最大静摩擦力等于滑动摩擦力。弹簧始终处在弹性限度内,弹簧的弹性势能Ep与形变量x的关系为。取重力加速度g = 10m/s2,结果可用根式表示。
(1)求木板刚接触弹簧时速度的大小及木板运动前右端距弹簧左端的距离x1;
(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x2及此时木板速度v2的大小;
(3)已知木板向右运动的速度从v2减小到0所用时间为t0。求木板从速度为v2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能U(用t0表示)。

44.(2023·江苏)如图所示,滑雪道AB由坡道和水平道组成,且平滑连接,坡道倾角均为45°。平台BC与缓冲坡CD相连。若滑雪者从P点由静止开始下滑,恰好到达B点。滑雪者现从A点由静止开始下滑,从B点飞出。已知A、P间的距离为d,滑雪者与滑道间的动摩擦因数均为,重力加速度为g,不计空气阻力。
(1)求滑雪者运动到P点的时间t;
(2)求滑雪者从B点飞出的速度大小v;
(3)若滑雪者能着陆在缓冲坡CD上,求平台BC的最大长度L。

45.(2023·湖南)如图,质量为的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为和,长轴水平,短轴竖直.质量为的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系,椭圆长轴位于轴上。整个过程凹槽不翻转,重力加速度为。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;
(2)在平面直角坐标系中,求出小球运动的轨迹方程;
(3)若,求小球下降高度时,小球相对于地面的速度大小(结果用及表示)。
46.(2023·全国)如图,一竖直固定的长直圆管内有一质量为M的静止薄圆盘,圆盘与管的上端口距离为l,圆管长度为。一质量为的小球从管的上端口由静止下落,并撞在圆盘中心,圆盘向下滑动,所受滑动摩擦力与其所受重力大小相等。小球在管内运动时与管壁不接触,圆盘始终水平,小球与圆盘发生的碰撞均为弹性碰撞且碰撞时间极短。不计空气阻力,重力加速度大小为g。求
(1)第一次碰撞后瞬间小球和圆盘的速度大小;
(2)在第一次碰撞到第二次碰撞之间,小球与圆盘间的最远距离;
(3)圆盘在管内运动过程中,小球与圆盘碰撞的次数。

47.(2023·浙江)一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角的直轨道、螺旋圆形轨道,倾角的直轨道、水平直轨道组成,除段外各段轨道均光滑,且各处平滑连接。螺旋圆形轨道与轨道、相切于处.凹槽底面水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁处,摆渡车上表面与直轨道、平台位于同一水平面。已知螺旋圆形轨道半径,B点高度为,长度,长度,摆渡车长度、质量。将一质量也为的滑块从倾斜轨道上高度处静止释放,滑块在段运动时的阻力为其重力的0.2倍。(摆渡车碰到竖直侧壁立即静止,滑块视为质点,不计空气阻力,,)
(1)求滑块过C点的速度大小和轨道对滑块的作用力大小;
(2)摆渡车碰到前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数;
(3)在(2)的条件下,求滑块从G到J所用的时间。
48.(2022·天津)冰壶是冬季奥运会上非常受欢迎的体育项目。如图所示,运动员在水平冰面上将冰壶A推到M点放手,此时A的速度,匀减速滑行到达N点时,队友用毛刷开始擦A运动前方的冰面,使A与间冰面的动摩擦因数减小,A继续匀减速滑行,与静止在P点的冰壶B发生正碰,碰后瞬间A、B的速度分别为和。已知A、B质量相同,A与间冰面的动摩擦因数,重力加速度取,运动过程中两冰壶均视为质点,A、B碰撞时间极短。求冰壶A
(1)在N点的速度的大小;
(2)与间冰面的动摩擦因数。
49.(2022·福建)如图,L形滑板A静置在粗糙水平面上,滑板右端固定一劲度系数为的轻质弹簧,弹簧左端与一小物块B相连,弹簧处于原长状态。一小物块C以初速度从滑板最左端滑入,滑行后与B发生完全非弹性碰撞(碰撞时间极短),然后一起向右运动;一段时间后,滑板A也开始运动.已知A、B、C的质量均为,滑板与小物块、滑板与地面之间的动摩擦因数均为,重力加速度大小为;最大静摩擦力近似等于滑动摩擦力,弹簧始终处于弹性限度内。求:
(1)C在碰撞前瞬间的速度大小;
(2)C与B碰撞过程中损失的机械能;
(3)从C与B相碰后到A开始运动的过程中,C和B克服摩擦力所做的功。
50.(2022·北京)体育课上,甲同学在距离地面高处将排球击出,球的初速度沿水平方向,大小为;乙同学在离地处将排球垫起,垫起前后球的速度大小相等,方向相反。已知排球质量,取重力加速度。不计空气阻力。求:
(1)排球被垫起前在水平方向飞行的距离x;
(2)排球被垫起前瞬间的速度大小v及方向;
(3)排球与乙同学作用过程中所受冲量的大小I。
51.(2022·海南)有一个角度可变的轨道,当倾角为时,A恰好匀速下滑,现将倾角调为,从高为h的地方从静止下滑,过一段时间无碰撞地进入光滑水平面,与B发生弹性正碰,B被一根绳子悬挂,与水平面接触但不挤压,碰后B恰好能做完整的圆周运动,已知A的质量是B质量的3倍,求:
①A与轨道间的动摩擦因数;
②A与B刚碰完B的速度大小;
③绳子的长度L。
52.(2022·湖北)打桩机是基建常用工具。某种简易打桩机模型如图所示,重物A、B和C通过不可伸长的轻质长绳跨过两个光滑的等高小定滑轮连接,C与滑轮等高(图中实线位置)时,C到两定滑轮的距离均为L。重物A和B的质量均为m,系统可以在如图虚线位置保持静止,此时连接C的绳与水平方向的夹角为60°。某次打桩时,用外力将C拉到图中实线位置,然后由静止释放。设C的下落速度为时,与正下方质量为2m的静止桩D正碰,碰撞时间极短,碰撞后C的速度为零,D竖直向下运动距离后静止(不考虑C、D再次相碰)。A、B、C、D均可视为质点。
(1)求C的质量;
(2)若D在运动过程中受到的阻力F可视为恒力,求F的大小;
(3)撤掉桩D,将C再次拉到图中实线位置,然后由静止释放,求A、B、C的总动能最大时C的动能。
53.(2022·广东)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态。当滑块从A处以初速度为向上滑动时,受到滑杆的摩擦力f为,滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动。已知滑块的质量,滑杆的质量,A、B间的距离,重力加速度g取,不计空气阻力。求:
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小和;
(2)滑块碰撞前瞬间的速度大小v1;
(3)滑杆向上运动的最大高度h。
54.(2022·河北)如图,光滑水平面上有两个等高的滑板A和B,质量分别为和,A右端和B左端分别放置物块C、D,物块质量均为,A和C以相同速度向右运动,B和D以相同速度向左运动,在某时刻发生碰撞,作用时间极短,碰撞后C与D粘在一起形成一个新滑块,A与B粘在一起形成一个新滑板,物块与滑板之间的动摩擦因数均为。重力加速度大小取。
(1)若,求碰撞后瞬间新物块和新滑板各自速度的大小和方向;
(2)若,从碰撞后到新滑块与新滑板相对静止时,求两者相对位移的大小。
55.(2022·湖南)如图(a),质量为m的篮球从离地H高度处由静止下落,与地面发生一次非弹性碰撞后反弹至离地h的最高处。设篮球在运动过程中所受空气阻力的大小是篮球所受重力的倍(为常数且),且篮球每次与地面碰撞的碰后速率与碰前速率之比相同,重力加速度大小为g。
(1)求篮球与地面碰撞的碰后速率与碰前速率之比;
(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,使得篮球与地面碰撞一次后恰好反弹至h的高度处,力F随高度y的变化如图(b)所示,其中已知,求的大小;
(3)篮球从H高度处由静止下落后,每次反弹至最高点时,运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,经过N次拍击后篮球恰好反弹至H高度处,求冲量I的大小。
56.(2022·山东)如图所示,“L”型平板B静置在地面上,小物块A处于平板B上的点,点左侧粗糙,右侧光滑。用不可伸长的轻绳将质量为M的小球悬挂在点正上方的O点,轻绳处于水平拉直状态。将小球由静止释放,下摆至最低点与小物块A发生碰撞,碰后小球速度方向与碰前方向相同,开始做简谐运动(要求摆角小于),A以速度沿平板滑动直至与B右侧挡板发生弹性碰撞。一段时间后,A返回到O点的正下方时,相对于地面的速度减为零,此时小球恰好第一次上升到最高点。已知A的质量,B的质量,A与B的动摩擦因数,B与地面间的动摩擦因数,取重力加速度。整个过程中A始终在B上,所有碰撞时间忽略不计,不计空气阻力,求:
(1)A与B的挡板碰撞后,二者的速度大小与;
(2)B光滑部分的长度d;
(3)运动过程中A对B的摩擦力所做的功;
(4)实现上述运动过程,的取值范围(结果用表示)。
57.(2022·全国)如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上:物块B向A运动,时与弹簧接触,到时与弹簧分离,第一次碰撞结束,A、B的图像如图(b)所示。已知从到时间内,物块A运动的距离为。A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同。斜面倾角为,与水平面光滑连接。碰撞过程中弹簧始终处于弹性限度内。求
(1)第一次碰撞过程中,弹簧弹性势能的最大值;
(2)第一次碰撞过程中,弹簧压缩量的最大值;
(3)物块A与斜面间的动摩擦因数。
58.(2024·上海)引力场中的运动
包括太阳、地球在内的所有物体都会在其周围产生引力场。在不同尺度的空间,引力场中的物体运动具有不同的表象。牛顿揭示了苹果下落和行星运动共同的物理机制。意味着天上的物理和地上的物理是一样的,物理规律的普适性反映了一种简单的美。
72.如图,小球a通过轻质细线Ⅰ,Ⅱ悬挂,处于静止状态。线Ⅰ长,Ⅰ上端固定于离地的O点,与竖直方向之间夹角;线Ⅱ保持水平。O点正下方有一与a质量相等的小球b,静置于离地高度的支架上。(取,,)
(1)在线Ⅰ,Ⅱ的张力大小,和小球a所受重力大小G中,最大的是 。
(2)烧断线Ⅱ,a运动到最低点时与b发生弹性碰撞。求:
①与b球碰撞前瞬间a球的速度大小;(计算)
②碰撞后瞬间b球的速度大小;(计算)
③b球的水平射程s。(计算)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录