公开课教案
课题:27.2 相似三角形的周长与面积
授课时间:2009年12月9日
授课班级:九年级(2)班
执教者:
一.教学目标
1、初步掌握相似三角形的周长比、面积比与相似比的关系以及关于它们之间关系的两条定理的证明方法,并会运用定理进行有关简单的计算。
2.在动手参与解决身边实际问题的过程中,增强主动探索、发现数学知识的意识,提高观察、归纳能力,应用数学知识解决生活中实际问题的能力。
3.在学习过程中,进一步改善独立思考、合作学习、自主评价等学习品质。
二.教学重点难点
重点:相似三角形的周长比、面积比与相似比的关系的探究与证明。
难点:相似三角形的周长比、面积比与相似比的关系的应用。
3. 教学过程
(一)设计龟免赛跑故事导入新课
4
2 2
1
有一只极速乌龟和骄傲的兔子在规定的两块相似四边形的场地上进行比赛,谁先跑完一圈谁为胜,已知:免子的速度是乌龟的4倍,结果乌龟跑完一圈只用了一个小时,兔子说,我睡上半个小时再跑,也能比你先跑完一圈;你认为兔子的说的话对吗?你能猜到比赛的最后结果吗?
(以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。)
(二)自主探究,发现新知
1.分组猜想探究活动, 完成下列实验报告单
(学生经历动手实验 - 观察-思考-归纳-发现的学习过程,分别总结两个相似三角形的周长比与相似比的关系,面积比与相似比的关系。注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。)
猜测得到命题:相似三角形的周长比等于相似比。相似三角形的面积比等于相似比的平方。
2.验证猜想,得出结论(小组讨论)
探究:如果两个三角形相似,它们的周长比是否等于相似比呢?两个相似多边形呢?
如果△ABC∽△A'B'C',相似比为k,那么
AB=kA′B,BC=kBC,CA=kCA
可以得到 相似三角形周长的比等于相似比
类似的方法还可以得出 相似多边形周长的比等于相似
延伸问题:
探究:
(1) 如图27.2-11⑴, ABC∽ A'B'C',相似比为k1 ,它们的面积比呢?
图27.2-11⑴
分析:如图27.2-11,分别作出 ABC和 A'B'C'的高AD和A'D'.
∵∠ADB=∠A'D'B'=900又∠B=∠B'
∴ ABD∽ A'B'D'
∴(在此得出相似三角形对应高的比等于相似比)
=
可以得到:相似三角形面积比等于相似比的平方
相似三角形对应中线的比,对应角平分线的比都等于相似比吗?
(2)如图图27.2-11(2),四边形ABCD相似于四边形A'B'C'D',相似比为k2,它们的面积比是多少?
图27.2-11(2)
∵ k22
∴ k22
相似多边形面积比等于相似比的平方
(三)运用性质,熟悉新知
1. 已知两个三角形相似,根据下列数据填表:
相似比 2 1/3
周长比 0.01 10
面积比 10000 0.0001
2. 实际问题的解决
在福州中环线的建设施工中,曾遇到这样一个实际问题:由于马路拓宽,有一个面积是100平方米、周长80米的三角形的绿化地被削去了一个角,变成了一块梯形绿地,原绿化地的一边AB的长由原来的20米缩短成12米(如图所示)。为了保证福州的绿化建设,市政府规定:因为种种原因而失去的绿地面积必须等面积补回。这样就引出了一个问题:这块失去的面积到底有多大?它的周长是多少?
你能够将上面生活中的实际问题转化为数学问题吗?
实际问题:如图,已知,在△中,DE∥BC,AB=20m,BD=12m, △的周长为80m,面积为100m2,求:△的周长和面积.
(通过探索、论证,到运用解决实际问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学来源于生活又服务于生活。)
3.引申分别连结CD和BE交于点G,
求:(1)(2),
(3),,,。
(对引例的变式是培养学生多层次、多角度思维能力的一种较好形式。复杂图形中观察基本图形对学生来说有一定的难度,教师借助于多媒体的力量,采用图形的闪烁,色彩的变化等手段,突出基本图形,突破难点。)
(四)小结反思, 自主评价
1. 知识技能部分的小结:
相似三角形的周长比、面积比与相似比的关系;两条有关定理的证明思路与证明方法;定理的运用(进行有关简单的计算)。
2.自主评价:
如:对网格图上的两个格点三角形相似的认识;对运用定理解决问题的注意点的反思性总结;对自己及同伴在课堂上数学学习表现的评价;提出自己的困惑与不解,或进行质疑等。
3. 教师根据学生自主评价情况作适当的点评。
(五)分层作业,着眼发展
1. 必做题: P54 习题27.2 第6题。
2. 选做题:(1)对引例继续探究
过点E作EF//AB,EF交BC于点F,其他条件不变,则的面积等于多少?平行四边形DBFE面积为多少?(作业的布置,帮助学生对知识的保持和迁移,尊重学生的个体差异满足多样化的学习需要,使不同层次的学生有不同的收获.)
(六)课后反思:
本节课是论证几何中“相似形”的重点内容之一,是在学会相似三角形的定义及判定的基础上,进一步研究相似三角形的性质,以完成对相似三角形的全面研究。它是全等三角形的拓展,也是解决有关实际问题的重要工具。本节课的引入,是以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。整个探究活动部分,主要是对网格图上的格点三角形进行研究,选择网格图上的格点三角形进行研究,主要考虑网格有支架作用,便于学生进行边长、周长、面积的计算。另外对于网格图学生在相似三角形的判定中已有接触,比较熟悉。这个部分注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。课本例题进行“再创造” ,以福州的中环线建设为背景,提出数学问题。这样的设计,既可以调动学生的学习热情与积极性,又可以使学生认识到,现实生活中处处有数学,提高学生应用数学的意识。在得出定理后,及时进行思维训练。通过探索、论证,到运用解决实际问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学来源于生活又服务于生活。对引例的变式是培养学生多层次、多角度思维能力的一种较好形式。
小结部分,拟让学生小结反思与自主评价。这样做,有利于学生巩固刚获得的知识和技能,有利于学生提高归纳能力和语言表达能力,有利于学生逐步养成对已学知识的反思习惯,有利于学生逐步树立敢于提出自己独到见解的求真精神,有利于学生逐步形成正确的数学价值观。当然,教师也将根据学生小结、自主评价的实际情况作适当的点评,以体现师生互动,发挥教师的主导作用。
乌龟场地
兔子场地
相似比 周长比 面积比
∽
∽
从以上表中可以看出,当相似比等于K时,周长比等于 ,面积比等于 。
由此可以猜想:相似三角形的周长比等于 ,面积比等于 。
从以上表中可以看出,当相似比等于K时,面积比等于 ,周长比等于 。
由此可以猜想:相似三角形的面积比等于 ,周长比于 。
要求:①在方格纸(方格边长为1个单位)上,画出一个与已知△ABC相似,
但相似比不为1的格点(每小组至少画两种情况);
②分别计算:△ABC与的相似比,周长比及面积比,然后填表;
小组分工:
目的:通过实验发现相似三角形的周长比、面积比与相似比的关系
《相似三角形的周长与面积》实验报告单