中小学教育资源及组卷应用平台
2025年九年级中考数学三轮冲刺练习二次函数中特殊四边形矩形和菱形存在性问题
1.综合与探究
如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C、D两点之间的距离是 ;
(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
2.如图,在平面直角坐标系中,抛物线yx2 x(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
(1)若OC=2OA,求抛物线对应的函数表达式;
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
(3)设直线yx+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.
3.如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
4.如图,一次函数yx图象与坐标轴交于点A、B,二次函数yx2+bx+c图象过A、B两点.
(1)求二次函数解析式;
(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
5.如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线y=x2+bx+c经过点B,D(﹣4,5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)F为抛物线对称轴上一点,Q为平面直角坐标系中的一点,是否存在以点Q,F,E,B为顶点的四边形是以BE为边的菱形.若存在,请求出点F的坐标;若不存在,请说明理由;
(3)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为M,连接ME,BP,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.
6.综合与探究
如图,抛物线yx2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.
(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.
(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.
①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;
②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.
7.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.
(1)求抛物线的解析式;
(2)将线段OE绕着点O沿顺时针方向旋转得到线段OE',旋转角为α(0°<α<90°),连接AE′,BE′,求BE′AE′的最小值;
(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.
8.如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
9.如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.
(1)求此抛物线的解析式;
(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;
(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
10.如图,已知直线yx+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
(1)求抛物线的表达式;
(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.
11.如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)M是线段AB上一点,N是抛物线上一点,当MN∥y轴且MN=2时,求点M的坐标;
(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
12.如图,二次函数y=x2+bx+c的图象交x轴于点A、B,交y轴于点C,点B的坐标为(1,0),对称轴是直线x=﹣1,点P是x轴上一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.
(1)求这个二次函数的解析式;
(2)若点P在线段AO上运动(点P与点A、点O不重合),求四边形ABCN面积的最大值,并求出此时点P的坐标;
(3)若点P在x轴上运动,则在y轴上是否存在点Q,使以M、N、C、Q为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
13.如图,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3).
(1)求抛物线的解析式;
(2)设点P是直线BC上方抛物线上一点,求出△PBC的最大面积及此时点P的坐标;
(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以BC为边,点B、C、M、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.
14.如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.
(1)求抛物线的解析式.
(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.
(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.
15.如图,在平面直角坐标系中,一次函数y=﹣2x+6的图象与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交AB于点E.
(1)求这条抛物线所对应的函数表达式;
(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;
(3)F是第一象限内抛物线上的动点(不与点D重合),过点F作x轴的垂线交AB于点G,连接DF,当四边形EGFD为菱形时,求点D的横坐标.
参考答案
1.【解答】解:(1)∵OA=1,
∴A(﹣1,0),
又∵对称轴为x=2,
∴B(5,0),
将A,B代入解析式得:
,
解得,
∴,自变量x为全体实数;
(2)由(1)得:C(0,),D(2,),
∴CD,
故答案为2;
(3)∵B(5,0),C(0,),
∴直线BC的解析式为:,
设E(x,),且0<x<5,
作EF∥y轴交BC于点F,
则F(x,),
∴EF(),
∴,
当x时,S△BCE有最大值为;
(4)设P(2,y),Q(m,n),
由(1)知B(5,0),C(0,),
若BC为矩形的对角线,
由中点坐标公式得:,
解得:,
又∵∠BPC=90°,
∴PC2+PB2=BC2,
即:,
解得y=4或y,
∴n或n=4,
∴Q(3,)或Q(3,4),
若BP为矩形的对角线,
由中点坐标公式得,
解得,
又∵∠BCP=90°,
BC2+CP2=BP2,
即:,
解得y,
∴Q(7,4),
若BQ为矩形的对角线,
由中点坐标公式得,
解得:,
又∵∠BCQ=90°,
∴BC2+CQ2=BQ2,
即:,
解得n,
∴Q(﹣3,),
综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,).
2.【解答】解:(1)∵A的坐标为(﹣1,0),
∴OA=1,
∵OC=2OA,
∴OC=2,
∴C的坐标为(0,2),
将点C代入抛物线yx2 x(m>0),
得2,即m=4,
∴抛物线对应的函数表达式为yx2x+2;
(2)如图,过P作PH∥y轴,交BC于H,
由(1)知,抛物线对应的函数表达式为yx2x+2,m=4,
∴B、C坐标分别为B(4,0)、C(0,2),
设直线BC解析式为y=kx+n,
则,解得,
∴直线BC的解析式为yx+2,
设点P的坐标为(m,m2m+2)(0<m<4),则H(m,m+2),
∴PHm2m+2﹣(m+2)
m2+2m
(m2﹣4m)
(m﹣2)2+2,
∵S△PBC=S△CPH+S△BPH,
∴S△PBCPH |xB﹣xC|
[(m﹣2)2+2]×4
=﹣(m﹣2)2+4,
∴当m=2时,△PBC的面积最大,此时点P(2,3);
(3)存在,理由如下:
∵直线yx+b与抛物线交于B(m,0),
∴直线BG的解析式为yxm①,
∵抛物线的表达式为yx2 x②,
联立①②解得,或,
∴G的坐标为(﹣2,m﹣1),
∵抛物线yx2 x的对称轴为直线x,
∴点F的横坐标为,
①若BG为边,
不妨设E在x轴上方,如图,过点E作EH⊥x轴于H,
设E的坐标为(t,t2 t),
∵∠GBE=90°,
∴∠OBG=∠BEH,
∴tan∠OBG=tan∠BEH,
∴,
解得:t=3或m(舍),
∴E的坐标为(3,2m﹣6),
由平移性质,
得:B的横坐标向左平移m+2个单位得到G的横坐标,
∵EF∥BG且EF=BG,
∴E横坐标向左平移m+2个单位,
得:到F的横坐标为3﹣(m+2)=﹣m+1,
∴m+1,
解得m=1,
∴E(3,﹣4),F(0,),
这说明E不在x轴上方,而在x轴下方;
②若BG为对角线,
设BG的中点为M,
由中点坐标公式得,,
∴M的坐标为(,),
∵矩形对角线BG、EF互相平分,
∴M也是EF的中点,
∴E的横坐标为,
∴E的坐标为(,),
∵∠BEG=90°,
∴EM,
∴,
整理得:16+(m2+4m+1)2=20(m+2)2,
变形得:16+[(m+2)2﹣3]2=20(m+2)2,
换元,令t=(m+2)2,
得:t2﹣26t+25=0,
解得:t=1或25,
∴(m+2)2=1或25,
∵m>0,
∴m=3,
即E的坐标为(0,),
F的坐标为(1,﹣4),
综上,即E的坐标为(0,),F的坐标为(1,﹣4)或E(3,﹣4),F(0,).
3.【解答】解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,
∴,
解得:,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)在y=﹣x2+2x+3中,令x=0,得y=3,
∴C(0,3),
∵△PBC的周长为:PB+PC+BC,BC是定值,
∴当PB+PC最小时,△PBC的周长最小.
如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.
∵AP=BP,
∴△PBC周长的最小值是AC+BC,
∵A(3,0),B(﹣1,0),C(0,3),
∴AC=3,BC.
∴△PBC周长的最小值是:3.
抛物线对称轴为直线x1,
设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:
,
解得:,
∴直线AC的解析式为y=﹣x+3,
∴P(1,2);
(3)存在.
设P(1,t),Q(m,n)
∵A(3,0),C(0,3),
则AC2=32+32=18,
AP2=(1﹣3)2+t2=t2+4,
PC2=12+(t﹣3)2=t2﹣6t+10,
∵四边形ACPQ是菱形,
∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,
①当以AP为对角线时,则CP=CA,如图2,
∴t2﹣6t+10=18,
解得:t=3±,
∴P1(1,3),P2(1,3),
∵四边形ACPQ是菱形,
∴AP与CQ互相垂直平分,即AP与CQ的中点重合,
当P1(1,3)时,
∴,,
解得:m=4,n,
∴Q1(4,),
当P2(1,3)时,
∴,,
解得:m=4,n,
∴Q2(4,),
②以AC为对角线时,则PC=AP,如图3,
∴t2﹣6t+10=t2+4,
解得:t=1,
∴P3(1,1),
∵四边形APCQ是菱形,
∴AC与PQ互相垂直平分,即AC与PQ中点重合,
∴,,
解得:m=2,n=2,
∴Q3(2,2),
③当以CP为对角线时,则AP=AC,如图4,
∴t2+4=18,
解得:t=±,
∴P4(1,),P5(1,),
∵四边形ACQP是菱形,
∴AQ与CP互相垂直平分,即AQ与CP的中点重合,
∴,,
解得:m=﹣2,n=3,
∴Q4(﹣2,3),Q5(﹣2,3),
综上所述,符合条件的点Q的坐标为:Q1(4,),Q2(4,),Q3(2,2),Q4(﹣2,3),Q5(﹣2,3).
4.【解答】解:(1)在yx中,令x=0得y,令y=0得x=3,
∴A(3,0),B(0,),
∵二次函数yx2+bx+c图象过A、B两点,
∴,解得,
∴二次函数解析式为yx2x;
(2)存在,理由如下:
由二次函数yx2x可得其对称轴为直线x1,
设P(1,m),Q(n,n2n),而B(0,),
∵C与B关于直线x=1对称,
∴C(2,),
①当BC、PQ为对角线时,如图:
此时BC的中点即是PQ的中点,即,
解得,
∴当P(1,),Q(1,)时,四边形BQCP是平行四边形,
由P(1,),B(0,),C(2,)可得PB2PC2,
∴PB=PC,
∴四边形BQCP是菱形,
∴此时Q(1,);
②BP、CQ为对角线时,如图:
同理BP、CQ中点重合,可得,
解得,
∴当P(1,0),Q(﹣1,0)时,四边形BCPQ是平行四边形,
由P(1,0),B(0,),C(2,)可得BC2=4=PC2,
∴四边形BCPQ是菱形,
∴此时Q(﹣1,0);
③以BQ、CP为对角线,如图:
BQ、CP中点重合,可得,
解得,
∴P(1,0),Q(3,0)时,四边形BCQP是平行四边形,
由P(1,0),B(0,),C(2,)可得BC2=4=PC2,
∴四边形BCQP是菱形,
∴此时Q(3,0);
综上所述,Q的坐标为:(1,)或(﹣1,0)或(3,0).
5.【解答】解:(1)由点D的纵坐标知,正方形ABCD的边长为5,
则OB=AB﹣AO=5﹣4=1,故点B的坐标为(1,0),
则,解得,
故抛物线的表达式为y=x2+2x﹣3;
(2)存在,理由:
∵点D、E关于抛物线对称轴对称,故点E的坐标为(2,5),
由抛物线的表达式知,其对称轴为直线x=﹣1,故设点F的坐标为(﹣1,m),
由点B、E的坐标得,BE2=(2﹣1)2+(5﹣0)2=26,
设点Q的坐标为(s,t),
∵以点Q,F,E,B为顶点的四边形是以BE为边的菱形,
故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),
则或,
解得或,
故点F的坐标为(﹣1,5)或(﹣1,5)或(﹣1,)或(﹣1,);
(3)存在,理由:
由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),
连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,
理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,
则EM+MP+PB=EM+1+MB″=B″E+1为最小,
由点B″、E的坐标得,直线B″E的表达式为y(x+2),
当x=﹣1时,y(x+2),故点M的坐标为(﹣1,),
则EM+MP+PB的最小值B″E+1=11.
6.【解答】解:(1)当y=0时,x2+2x﹣6=0,
解得x1=﹣6,x2=2,
∴A(﹣6,0),B(2,0),
当x=0时,y=﹣6,
∴C(0,﹣6),
∵A(﹣6,0),C(0,﹣6),
∴直线AC的函数表达式为y=﹣x﹣6,
∵B(2,0),C(0,﹣6),
∴直线BC的函数表达式为y=3x﹣6;
(2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,
∵B(2,0),C(0,﹣6),
∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,
∵DE∥BC,
∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,
分两种情况:
如图,当BD=BC时,四边形BDEC为菱形,
∴BD2=BC2,
∴(m﹣2)2+(m+6)2=40,
解得:m1=﹣4,m2=0(舍去),
∴点D的坐标为(﹣4,﹣2),
∵点D向左移动2个单位长度,向下移动6个单位长度得到点E,
∴点E的坐标为(﹣6,﹣8);
如图,当CD=CB时,四边形CBED为菱形,
∴CD2=CB2,
∴2m2=40,
解得:m1=﹣2,m2=2(舍去),
∴点D的坐标为(﹣2,26),
∵点D向右移动2个单位长度,向上移动6个单位长度得到点E,
∴点E的坐标为(2﹣2,2);
综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);
②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,
∵A(﹣6,0),B(2,0),
∴抛物线的对称轴为直线x=﹣2,
∵直线BC的函数表达式为y=3x﹣6,直线l∥BC,
∴设直线l的解析式为y=3x+b,
∵点D的坐标(m,﹣m﹣6),
∴b=﹣4m﹣6,
∴M(﹣2,﹣4m﹣12),
∵抛物线的对称轴与直线AC交于点N.
∴N(﹣2,﹣4),
∴MN=﹣4m﹣12+4=﹣4m﹣8,
∵S△DMN=S△AOC,
∴(﹣4m﹣8)(﹣2﹣m)6×6,
整理得:m2+4m﹣5=0,
解得:m1=﹣5,m2=1(舍去),
∴点D的坐标为(﹣5,﹣1),
∴点M的坐标为(﹣2,8),
∴DM3,
答:DM的长为3.
7.【解答】解:(1)把C(1,0),B(0,3)代入y=﹣x2+bx+c中,
得:,
∴b=﹣2,c=3,
∴y=﹣x2﹣2x+3,
(2)在OE上取一点D,使得ODOE,
连接DE',BD,
∵,对称轴x=﹣1,
∴E(﹣1,0),OE=1,
∴OE'=OE=1,OA=3,
∴,
又∵∠DOE'=∠E'OA,
△DOE'∽△E'OA,
∴,
∴,
当B,E',D三点共线时,BE′+DE′最小为BD,
BD,
∴的最小值为;
(3)存在,
∵A(﹣3,0),B(0,3),
设N(n,﹣n2﹣2n+3),
则AB2=18,AN2=(n2+2n﹣3)2+(n+3)2,BN2=n2+(n2+2n)2,
∵以点A,B,M,N为顶点构成的四边形是矩形,
∴△ABN是直角三角形,
若AB是斜边,则AB2=AN2+BN2,
即18=(n2+2n﹣3)2+(n+3)2+n2+(n2+2n)2,
解得:n1,(不符合题意的值已舍去),
∴N的横坐标为或,
若AN是斜边,则AN2=AB2+BN2,
即(n2+2n﹣3)2+(n+3)2=18+n2+(n2+2n)2,
解得n=0(与点B重合,舍去)或n=﹣1,
∴N的横坐标是﹣1,
若BN是斜边,则BN2=AB2+AN2,
即n2+(n2+2n)2=18+(n2+2n﹣3)2+(n+3)2,
解得n=﹣3(与点A重合,舍去)或n=2,
∴N的横坐标为2,
综上N的横坐标为,,﹣1,2.
8.【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,抛物线交x轴于点A,B(1,0),
∴A(﹣3,0),
∴OA=OC=3,
∴C(0,3),
∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),
把(0,3)代入抛物线的解析式,得a=﹣1,
∴抛物线的解析式为y=﹣x2﹣2x+3;
(2)如图(2)中,连接OP.设P(m,﹣m2﹣2m+3),
S=S△PAO+S△POC+S△OBC,
3×(﹣m2﹣2m+3)3×(﹣m)1×3
(﹣m2﹣3m+4)
(m)2,
∵0,
∴当m时,S的值最大,最大值为,此时P(,);
(3)存在,理由如下:
如图3﹣1中,当点N在y轴上时,四边形PMCN是矩形,此时P(﹣1,4),N(0,4);
如图3﹣2中,当四边形PMCN是矩形时,设M(﹣1,n),P(t,﹣t2﹣2t+3),则N(t+1,0),
由题意,,
消去n得,3t2+5t﹣10=0,
解得t,
∴P(,),N(,0)或P′(,),N′(,0).
综上所述,满足条件的点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).
9.【解答】解:(1)抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),
∴A(﹣1,0),
∴,解得,
∴抛物线的解析式y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3,
∴C(0,3),
设直线BC的解析式为y=kx+3,
将点B(3,0)代入得:0=3k+3,
解得:k=﹣1,
∴直线BC的解析式为y=﹣x+3;
设点D坐标为(t,﹣t2+2t+3),则点N(t,﹣t+3),
∵A(﹣1,0),C(0,3),
∴AC2=12+32=10,
AN2=(t+1)2+(﹣t+3)2=2t2﹣4t+10,
CN2=t2+(3+t﹣3)2=2t2,
①当AC=AN时,AC2=AN2,
∴10=2t2﹣4t+10,
解得t1=2,t2=0(不合题意,舍去),
∴点N的坐标为(2,1);
②当AC=CN时,AC2=CN2,
∴10=2t2,
解得t1,t2(不合题意,舍去),
∴点N的坐标为(,3);
③当AN=CN时,AN2=CN2,
∴2t2﹣4t+10=2t2,
解得t,
∴点N的坐标为(,);
综上,存在,点N的坐标为(2,1)或(,3)或(,);
(3)设E(1,a),F(m,n),
∵B(3,0),C(0,3),
∴BC=3,
①以BC为对角线时,BC2=CE2+BE2,
∴(3)2=12+(a﹣3)2+a2+(3﹣1)2,
解得:a,或a,
∴E(1,)或(1,),
∵B(3,0),C(0,3),
∴m+1=0+3,n0+3或n0+3,
∴m=2,n或n,
∴点F的坐标为(2,)或(2,);
②以BC为边时,BE2=CE2+BC2或CE2=BE2+BC2,
∴a2+(3﹣1)2=12+(a﹣3)2+(3)2或12+(a﹣3)2=a2+(3﹣1)2+(3)2,
解得:a=4或a=﹣2,
∴E(1,4)或(1,﹣2),
∵B(3,0),C(0,3),
∴m+0=1+3,n+3=0+4或m+3=1+0,n+0=3﹣2,
∴m=4,n=1或m=﹣2,n=1,
∴点F的坐标为(4,1)或(﹣2,1),
综上所述:存在,点F的坐标为(2,)或(2,)或(4,1)或(﹣2,1).
10.【解答】解:(1)当x=0时,y=4,
∴C (0,4),
当y=0时,x+4=0,
∴x=﹣3,
∴A (﹣3,0),
∵对称轴为直线x=﹣1,
∴B(1,0),
∴设抛物线的表达式:y=a(x﹣1) (x+3),
∴4=﹣3a,
∴a,
∴抛物线的表达式为:y(x﹣1) (x+3)x2x+4;
(2)如图1,
作DF⊥AB于F,交AC于E,
∴D(m,m+4),E(m,m+4),
∴DEm+4﹣(m+4)m2﹣4m,
∴S△ADCOA (m2﹣4m)=﹣2m2﹣6m,
∵S△ABC8,
∴S=﹣2m2﹣6m+8=﹣2(m)2,
∴当m时,S最大,
当m时,y5,
∴D(,5);
(3)存在点P和点Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形,理由如下:
设P(﹣1,n),
∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,
∴PA=PC,
即:PA2=PC2,
∴(﹣1+3)2+n2=1+(n﹣4)2,
∴n,
∴P(﹣1,),
∵xP+xQ=xA+xC,yP+yQ=yA+yC
∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4,
∴Q(﹣2,).
11.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(4,0)和O(0,0),
∴,
解得:,
∴抛物线的解析式为:y=﹣x2+4x;
(2)∵直线AB经过点A(4,0)和B(0,4),
∴直线AB的解析式为:y=﹣x+4,
∵MN∥y轴,
设M(t,﹣t+4),N(t,﹣t2+4t),其中0≤t≤4,
当M在N点的上方时,
MN=﹣t+4﹣(﹣t2+4t)=t2﹣5t+4=2,
解得:t1,t2(舍),
∴M1(,),
当M在N点下方时,
MN=﹣t2+4t﹣(﹣t+4)=﹣t2+5t﹣4=2,
解得:t1=2,t2=3,
∴M2(2,2),M3(3,1),
综上,满足条件的点M的坐标有三个(,)或(2,2)或(3,1);
(3)存在,
①如图2,若AC是矩形的边,
设抛物线的对称轴与直线AB交于点R,且R(2,2),
过点C,A分别作直线AB的垂线交抛物线于点P1,P2,
∵C(1,3),D(2,4),
∴CD,
同理得:CR,RD=2,
∴CD2+CR2=DR2,
∴∠RCD=90°,
∴点P1与点D重合,
当CP1∥AQ1,CP1=AQ1时,四边形ACP1Q1是矩形,
∵C(1,3)向右平移1个单位,向上平移1个单位得到P1(2,4),
∴A(4,0)向右平移1个单位,向上平移1个单位得到Q1(5,1),
此时直线P1C的解析式为:y=x+2,
∵直线P2A与P1C平行且过点A(4,0),
∴直线P2A的解析式为:y=x﹣4,
∵点P2是直线y=x﹣4与抛物线y=﹣x2+4x的交点,
∴﹣x2+4x=x﹣4,
解得:x1=﹣1,x2=4(舍),
∴P2(﹣1,﹣5),
当AC∥P2Q2时,四边形ACQ2P2是矩形,
∵A(4,0)向左平移3个单位,向上平移3个单位得到C(1,3),
∴P2(﹣1,﹣5)向左平移3个单位,向上平移3个单位得到Q2(﹣4,﹣2);
②如图3,若AC是矩形的对角线,
设P3(m,﹣m2+4m)
当∠AP3C=90°时,过点P3作P3H⊥x轴于H,过点C作CK⊥P3H于K,
∴∠P3KC=∠AHP3=90°,∠P3CK=∠AP3H,
∴△P3CK∽△AP3H,
∴,
∴,
∵点P不与点A,C重合,
∴m≠1或m≠4,
∴m2﹣3m+1=0,
∴m,
∴如图4,满足条件的点P有两个,即P3(,),P4(,),
当P3C∥AQ3,P3C=AQ3时,四边形AP3CQ3是矩形,
∵P3(,)向左平移个单位,向下平移个单位得到C(1,3),
∴A(4,0)向左平移个单位,向下平移个单位得到Q3(,),
当P4C∥AQ4,P4C=AQ4时,四边形AP4CQ4是矩形,
∵P4(,)向右平移个单位,向上平移个单位得到C(1,3),
∴A(4,0)向右平移个单位,向上平移个单位得到Q4(,);
综上,点Q的坐标为(5,1)或(﹣4,﹣2)或(,)或(,).
12.【解答】解:(1)∵抛物线对称轴是直线x=﹣1,点B的坐标为(1,0),
∴点A的坐标为(﹣3,0),
∴二次函数解析式为y=(x﹣1)(x+3)=x2+2x﹣3;
(2)连接ON,如图:
设P(m,0),则N(m,m2+2m﹣3),
在y=x2+2x﹣3中,令x=0得y=﹣3,
∴C(0,﹣3),
∴OC=3,
∴S四边形ABCN=S△AON+S△BOC+S△CON
3(﹣m2﹣2m+3)1×33(﹣m)
m2m+6
(m)2,
∵0,
∴当m时,S四边形ABCN取最大值,
此时P(,0);
∴四边形ABCN面积的最大值是,此时点P的坐标为(,0);
(3)在y轴上存在点Q,使以M、N、C、Q为顶点的四边形是菱形,理由如下:
由A(﹣3,0),C(0,﹣3)得直线AC解析式为y=﹣x﹣3,
设Q(0,t),P(n,0),则M(n,﹣n﹣3),N(n,n2+2n﹣3),
∵MN∥CQ,
∴当M、N、C、Q为顶点的四边形是菱形时,MN,CQ是一组对边;
①当MC,NQ为对角线时,MC,NQ的中点重合,且CN=CQ,
∴,
解得(此时M,N与C重合,舍去)或;
∴Q(0,﹣1);
②当MQ,CN为对角线时,MQ,CN的中点重合,且CQ=CM,
∴,
解得(舍去)或或,
∴Q(0,﹣1﹣3)或(0,﹣1+3);
综上所述,Q的坐标为(0,﹣1)或(0,﹣1﹣3)或(0,﹣1+3).
13.【解答】解:(1)由题意得,抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),
则﹣3a=3,
解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+2x+3;
(2)由点B、C的坐标得,直线BC的表达式为:y=﹣x+3,
如图,过点P作y轴的平行线交CB于点H,
设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),
则△PBC的面积=S△PHC+S△PHBPH×OB(﹣x2+2x+x﹣3)(x)2,
即△PBC的面积的最大值为,此时点P(,);
(3)存在,理由:
∵B(3,0),C(0,3),
∴抛物线的解析式为y=﹣x2+2x+3,
∴对称轴为:x=1,
设点M(1,t),N(x,y),
若BC为菱形的边长,菱形BCMN,
则BC2=CM2,即18=12+(t﹣3)2,
解得:t13,t23,
∵,
∴x=4,y=t﹣3,
∴N1(4,),N2(4,);
若BC为菱形的边长,菱形BCNM,
则BC2=BM2,即18=(3﹣1)2+t2,
解得:t3,t4,
∵,
∴x=﹣2,y=3+t,
∴N3(﹣2,),N4(﹣2,);
即点N的坐标为:(4,)或(4,)或(﹣2,3)或(﹣2,3).
14.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+x+c 得:
,
解得:,
∴抛物线解析式为yx2+x+4;
(2)联立,
解得或,
∴D(2,﹣3),E(2,﹣3),
∵点M为直线l上的一动点,横坐标为t,
∴M(t,﹣t﹣1),
∴N(t,t2+t+4),
∴MNt2+t+4﹣(﹣t﹣1)t2+2t+5,
∴S△NEDMN |xD﹣xE|(t2+2t+5)×2(t﹣2)2+7,
∵0,0<t<4,
∴当t=2时,S△NED取最大值7,
∴△NED面积的最大值是7;
(3)在yx2+x+4中,令x=0得y=4,
∴C(0,4),
设M(t,﹣t﹣1),R(m,n),
又B(4,0),
①当BC,MR为对角线时,BC,MR的中点重合,且BM=CM,
∴,
解得,
∴R(,);
②当BM,CR为对角线时,BM,CR的中点重合,且BC=CM,
∴,
解得或,
∴R(,)或(,);
③当BR,CM为对角线时,BR,CM的中点重合,且BC=BM,
∴,
解得或,
∴R(,)或(,);
综上所述,R的坐标为(,)或(,)或(,)或(,)或(,).
15.【解答】解:(1)令y=0,则﹣2x+6=0,
则x=3;
令x=0,则y=6,
∴A(3,0),B(0,6),
把A(3,0),B(0,6)代入y=﹣x2+bx+c,
得,
解得,
∴抛物线所对应的函数表达式为y=﹣x2+x+6;
(2)存在点D,使得△BDE和△ACE相似,
设点D(t,﹣t2+t+6),则E(t,﹣2t+6),C(t,0),H(t,6),
∴EC=﹣2t+6,AC=3﹣t,BH=t,DH=﹣t2+t,DE=﹣t2+3t,
∵△BDE和△ACE相似,∠BED=∠AEC,
∴△ACE∽△BDE或△ACE∽△DBE,
①如图,当△ACE∽△BDE时,∠BDE=∠ACE=90°,
∴BD∥AC,
∴D点纵坐标为6,
∴﹣t2+t+6=6,
解得t=0或t=1,
∴D(1,6);
②如图,当△ACE∽△DBE时,∠BDE=∠CAE,
过B作BH⊥DC于H,
∴∠BHD=90°,
∴,
∴,
∴﹣2t2+2t=t,
解得t=0(舍去)或,
∴,
综上所述,点D的坐标为(1,6)或.
(3)①如图,当D在F左侧时,
∵四边形EGFD为菱形,
∴DE∥FG,DE=FG,ED=EG,
设点D(m,﹣m2+m+6),E(m,﹣2m+6),F(n,﹣n2+n+6),G(n,﹣2n+6),
∴DE=﹣m2+3m,FG=﹣n2+3n,
∴﹣m2+3m=﹣n2+3n,
即(m﹣n)(m+n﹣3)=0,
∵m﹣n≠0,
∴m+n﹣3=0,
即m+n=3或n=3﹣m,
∵A(3,0),B(0,6),
∴AO=3,BO=6,
∴,
过点G作GK⊥DE于K,
∴KG∥AC,
∴∠EGK=∠BAC,
∴,
即,
∴,
∵DE=EG,
∴,
∴,
解得(不合题意,舍去)或,
∴,
∴点D的横坐标为 .
②如图,当D在F右侧时,
同①方法可得点D的横坐标为 .
21世纪教育网(www.21cnjy.com)