1 、三位数乘两位数的笔算方法:
(1)先用两位数个位上的数字去乘三位数,得数的末位和两位数的个位对齐;
(2)再用两位数十位上的数字去乘三位数,得数的末位和两位数的十位对齐;
(3)最后把两次乘得的积相加。
2、在乘法里,一个因数不变,另一个因数乘一个数或除以一个不为0的数,积也乘或除以相同的数。
3 、①因数末尾有0的乘法的笔算方法:先把0前面的数相乘,再看两个因数末尾一共有几个0,就在乘得的积的末尾添上几个0.
②整百整十数乘整十数的口算方法:先算出0前面的数相乘的积,再看两个因数末尾一共有几个0,就在乘得的积的末尾添上几个0.
4、乘法的估算方法:可以把每个因数都看成与它接近的整十、整百、整千。。。的数,也可以将两个因数中的任意一个因数看作与它接近的整十、整百、整千。。。的数来估算出结果大约是多少。
5、数量关系
①单价×数量=总价→总价÷数量=单价 总价÷单价=数量
②速度×时间=路程→路程÷时间=速度 路程÷速度=时间
6、乘法运算定律:
(1)乘法交换律:a×b=b×a 两个数相乘,交换因数的位置,积不变。
(2)乘法结合律:(a×b)×c=a×(b×c)三个数相乘,可以先把前两个数相乘,再乘第三个数 ,也可以先把后两个数相乘,再乘以第一个数,积不变。
(3)乘法分配率:(a+b)×c=a×c+b×c 两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(4)连除的性质:a÷b÷c=a÷(b×c)一个数连续除以两个数,等于除以这两个数的积。
【考点精讲1】一列火车每小时行驶145千米,16小时可以行驶多少千米?如图竖式中箭头所指的这一步是在计算( )。
A.10小时行驶的千米数
B.1小时行驶的千米数
C.16小时行驶的千米数
【答案】A
【分析】根据三位数乘两位数的计算方法:先用两位数个位上的数6去乘三位数145,即6个一乘145得870个一,就是870,表示6小时行驶的千米数是870千米;再用两位数十位上的数1去乘三位数145,即1个十乘145得145个十,就是1450,表示10小时行驶的千米数是1450千米;最后把两次乘得的积相加。据此解答。
【详解】根据分析可知:
竖式中箭头所指的这一步是在计算10小时行驶的千米数。
故答案为:A
【考点精讲2】.如果甲数=320×80,乙数=32×800,那么( )。
A.甲数>乙数 B.甲数=乙数 C.甲数<乙数
【答案】B
【分析】根据三位数乘两位数的计算,分别计算出两个算式的结果,据此比较即可。
【详解】320×80=25600
32×800=25600
320×80=32×800,甲数=乙数。
故答案为:B
【考点精讲3】已知4□2×13表示一个三位数乘两位数,那么( )有可能是算式的积。
A.4223 B.5226 C.12336
【答案】B
【分析】根据题意可知,4□2是个三位数,则□的取值范围是0~9,则计算出402×13和492×13的积,再和选项的数进行比较即可解答。
【详解】402×13=5226,492×13=6396
A.4223<5226,不是算式的积;
B.402×13=5226,符合题意;
C.12336>6396,不是算式的积;
故答案为:B
【点睛】掌握三位数乘两位数的计算方法是解题的关键。
【考点精讲4】图1是沙漠中的一块绿地,图2中箭头所指的部分表示( )。
A.沙蒿的面积 B.沙打旺的面积 C.绿地的总面积 D.绿地的周长
【答案】B
【分析】三位数乘两位数的笔算法则:先用两位数的个位分别与三位数的每一位数相乘,乘得的积的末尾和个位对齐。再用两位数的十位分别与三位数的每一位数相乘,乘得的积的末尾和十位对齐。最后,将两次乘得的积相加。
【详解】由题意得,计算316×68时,先用68个位上的8去乘316,即316×8=2528。其中,316表示这块绿地的长,8表示沙打旺的宽,所以316×8=2528算的是沙打旺的面积。
故答案为:B
【考点精讲5】一盒牛奶净含量是220克,18盒牛奶的净含量一共约多少克?下面估算准确的是( )。
A. B. C.
【答案】B
【分析】一盒牛奶的净含量是220克,18乘220即可求出18盒牛奶的净含量,此题要求的是估算,估算时把18看作20,计算出220与20的积即可。
【详解】220×18≈220×20=4400(克)
故答案为:B
【考点精讲6】下列算式中,( )的积与340×22的积相等。
A.170×88 B.680×44 C.680×11 D.340×11
【答案】C
【分析】一个因数扩大(或缩小)若干倍(0除外),另一个因数缩小(或扩大)相同的倍数,积不变;据此解答。
【详解】A.由变为,是一个因数340缩小了2倍,另一个因数22扩大了4倍,根据积的变化规律可知,积会扩大2倍,结果不相等;
B.由变为,是一个因数340扩大了2倍,另一个因数22扩大了2倍,根据积的变化规律可知,积会扩大4倍,结果不相等;
C.由变为,是一个因数340扩大了2倍,另一个因数22缩小了2倍,根据积的变化规律可知,积不变,结果相等;
D.由变为,是一个因数340不变,另一个因数22缩小了2倍,根据积的变化规律可知,积会缩小2倍,结果不相等。
故答案为:C
【考点精讲7】已知买a盒彩笔共花b元钱(a、b不等于0)。求“每盒彩笔多少元”用到的数量关系式是( )。
A.单价×数量=总价 B.总价÷数量=单价
C.总价÷单价=数量 D.不确定
【答案】B
【分析】已知买a盒彩笔共花b元钱;a表示数量,b表示总价,求“每盒彩色多少元”,就是求每盒彩笔的单价,运用除法解答。
【详解】运用除法,总价÷数量=单价,求出每盒彩笔多少元。
故答案为:B
【考点精讲8】下面四种不同物体运行的速度如下,速度最快的是( )。
A.150千米/时 B.200米/分 C.2千米/秒 D.200千米/分
【答案】D
【分析】根据1千米=1000米,1时=60分=360秒,把这些速度单位统一成米/时再比较大小,150千米/时乘1000,200米/分乘60,2千米/秒乘1000再乘360,200千米/分乘1000再乘60,再比较数大小即可。
【详解】150千米/时×1000=150000(米/时)
200米/分×60=12000(米/时)
2千米/秒×1000×360=720000(米/时)
200千米/分×1000×60=12000000(米/时)
12000000>720000>150000>12000
200千米/分速度最快
故答案为:D
【考点精讲9】25×98×4=25×4×98应用了( )。
A.乘法交换律 B.乘法结合律 C.乘法分配律
【答案】A
【分析】两个数相乘,交换因数的位置,它们的积不变,叫做乘法交换律;
乘法结合律是指三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另一个数相乘,积不变的乘法运算方法;
乘法分配律是指两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。据此选择即可。
【详解】计算25×98×4=25×4×98时,是把4和98交换位置,所以应用的运算定律是乘法交换律。
故答案为:A
【考点精讲10】计算25×28最简便的方法是( )。
A.25×20+25×8 B.25×30-25×2 C.25×4×7 D.25×20×8
【答案】C
【分析】在25×28的式子中有25,而25与4相乘的积是100,且28可以分解为4与7的积,再根据乘法结合律先求出25与4的积,所得的积再乘7,这是最简便的方法。
【详解】25×28
=25×4×7
=100×7
=700
故答案为:C
【点睛】在一个式子中有几个数相乘,且其中2个数的积正好是整十数,那么就可以采用乘法结合律会达到简算的效果。
【考点精讲11】学校图书馆买了两种书,《我爱发明》每本22元,《童话故事》每本18元,这两种书各买25本,共要花多少元?正确列式为( )。
A.22+18×25 B.22×25-18×25 C.(22+18)×25
【答案】C
【分析】《我爱发明》每本价钱乘买的本数,可以算出买《我爱发明》花了(22×25)元;《童话故事》每本价钱乘买的本数,可以算出买《童话故事》花了(18×25)元。买《我爱发明》花的钱数加上买《童话故事》花的钱数,可以算出一共要花(22×25+18×25)元。
也可以先算买一本《我爱发明》和一本《童话故事》花了(22+18)元,买一本《我爱发明》和一本《童话故事》花的钱数乘这两种书各买的本数,即可算出一共要花(22+18)×25(元)。
【详解】22×25+18×25
=(22+18)×15
=40×25
=1000(元)
A.22+18×25计算的是买1本《我爱发明》和25本《童话故事》花了多少元。
B.22×25-18×25计算的是买25本《我爱发明》比买25本《童话故事》多花了多少元。
C.(22+18)×25计算的是买25本《我爱发明》和买25本《童话故事》一共花了多少元。
正确列式为(22+18)×25。
故答案为:C
【考点精讲12】欢欢的计算器上数字键“6”坏了,要用这个计算器算出“288÷36”的得数,可以计算( )。
A.288÷18×2 B.288÷6÷6 C.288÷4÷9
【答案】C
【分析】计算器上数字键“6”坏了,因此不能使用数字键“6”,即将36写成4×9,然后运用整数除法的性质进行选择即可。一个数连续除以两个数,可以用这个数除以后面两个数的积。
【详解】288÷(4×9)=288÷4÷9
故答案为:C
【点睛】熟练掌握整数除法的性质是解答此题的关键。
一、选择题
1.288×27=( )。
A.7776 B.7775 C.7774
【答案】A
【分析】三位数乘两位数:先用两位数个位上的数与三位数的每一位上的数依次相乘,再用两位数十位上的数与三位数的每一位上的数依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满几十就向前一位进“几”,再把两次相乘的积加起来。
【详解】288×27=7776
故答案为:A
【点睛】熟练掌握三位数乘两位的计算方法是解答的关键。
2.657×47=( )。
A.30877 B.30869 C.30879
【答案】C
【分析】三位数乘两位数:先用两位数个位上的数与三位数的每一位上的数依次相乘,再用两位数十位上的数与三位数的每一位上的数依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满几十就向前一位进“几”,再把两次相乘的积加起来。
【详解】657×47=30879
故答案为:C
【点睛】熟练掌握三位数乘两位的计算方法是解答的关键。
3.(125+6)×8=125×8+6×8,这是根据( )。
A.乘法交换律 B.乘法分配律 C.乘法结合律
【答案】B
【分析】乘法分配律是指两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。据此可知,计算(125+6)×8时,将两个加数125和6分别乘8,运用了乘法分配律。
【详解】(125+6)×8
=125×8+6×8
=1000+48
=1048
这是根据乘法分配律。
故答案为:B
【点睛】本题考查目的是学生对乘法分配律的掌握和应用。
4.和225×80的结果不相等的算式是( )。
A.80×225 B.450×40 C.45×500
【答案】C
【分析】根据三位数乘两位数的计算,计算出225×80的结果,再分别计算出每个选项的结果,选出不相等的即可。
【详解】225×80=18000
A.80×225=18000,结果相等;
B.450×40=18000,结果相等;
C.45×500=22500,结果不相等。
和225×80的结果不相等的算式是45×500。
故答案为:C
5.如图中点A表示的数可能是下面算式( )的积。
A.198×39 B.398×49 C.498×59
【答案】C
【分析】根据题意,点A介于20000与30000之间,且接近30000;根据估算的计算方法,分别求出各个算式的结果,再进一步解答。
【详解】点A介于20000与30000之间,且接近30000;
A.198×39≈200×40=8000
B.398×49≈400×50=20000
C.498×59≈500×60=30000
只有C选项中算式符合。
故答案为:C
【点睛】考查了运用估算的方法解决问题的能力,可以把数看作近似整十、整百、整千……的数进行估算。
6.学校图书馆买来《少儿百科全书》12本,每本24元,后来又买了5本,一共用去多少元?列式为( )。
A.12×24 B.12×24×5 C.(12+5)×24 D.12×24-5×24
【答案】C
【分析】《少儿百科全书》每本的价钱乘总共买的本数即等于一共用去的钱,据此即可解答。
【详解】(12+5)×24
=12×24+5×24
=288+120
=408(元)
故答案为:C
【点睛】熟练掌握总价、单价和数量三者之间的关系是解答本题的关键。
7.打字员张阿姨平均每分钟打112个字,小明用竖式计算了她25分钟可以打多少个字。竖式中箭头所指的这一步是在计算( )。
A.20分钟打字的个数
B.5分钟打字的个数
C.25分钟打字的个数
【答案】A
【分析】计算112×25时,先计算112×5=560,表示5分钟能打560个字;再计算112×20=2240,表示20分钟能打2240个字;最后计算560+2240=2800,表示25分钟能打2800个字。
【详解】由分析得:
竖式中箭头所指的这一步是在计算20分钟打字的个数。
故答案为:A
【点睛】熟练掌握三位数乘两位数的计算方法是解答此题的关键。
8.在999×99中,一个因数扩大10倍,另一个因数不变,积( )。
A.扩大10倍 B.缩小 C.不变
【答案】A
【分析】积的变化规律:
(1)如果一个因数扩大几倍或缩小为原来的几分之一,另一个因数不变,那么积也扩大相同倍数或缩小为原来的几分之一;
(2)如果一个因数扩大几倍,另一个因数缩小为原来的几分之一,那么积不变。
【详解】根据分析可知:
在999×99中,一个因数扩大10倍,另一个因数不变,积扩大10倍。
故答案为:A
【点睛】熟练掌握积的变化规律是解答此题的关键。
9.364×(297-245)=( )。
A.18923 B.18928 C.18926
【答案】B
【分析】计算364×(297-245)时,先算小括号里的减法,再算小括号外的乘法,据此计算出算式的结果。
【详解】364×(297-245)
=364×52
=18928
故答案为:B
【点睛】本题考查了学生对带有小括号的混合运算以及三位数乘两位数的计算方法的掌握与运用。
10.丹丹一家自驾游想早点到达目的地,小轿车如果速度是原来的4倍,那么所用时间是原来的( )。
A.2倍 B. C.4倍
【答案】B
【分析】根据商的变化规律,被除数不变,除数扩大到原来的n倍,商就缩小到原来的;根据题意,目的地不变,意思是路程不变,根据时间=路程÷速度,被除数不变,除数是原来的4倍,那么商则是原来的,据此解答。
【详解】根据时间=路程÷速度,路程不变,速度是原来的4倍,那么时间是原来的。
故答案为:B
【点睛】本题解答的关键是明确时间=路程÷速度,及被除数、除数、商之间的关系。
11.小张要买30个鼠标,他带了3000元,买价格是( )元的鼠标最合适。
A.97 B.102 C.198
【答案】A
【分析】根据总价=单价×数量,结合选项中单价进行分析即可解答。
【详解】A.鼠标单价是97元,将97估成100,100×30=3000(元),将鼠标单价估大了,买30个鼠标3000元还够用,所以单价是97元的鼠标合适;
B.鼠标单价是102元,将102估成100,100×30=3000(元),将鼠标单价估小了,买30个鼠标3000元不够用,所以单价是102元的鼠标不合适;
C.鼠标单价是198元,将198估成200,200×30=6000(元),6000元与3000元相差较大,买30个鼠标3000元不够用,所以单价是198元的鼠标不合适。
故答案为:A
【点睛】本题考查的是经济问题,熟练掌握整数乘法的估算方法是解答此题的关键。
12.用1、3、5、7、9组成一个三位数和一个两位数,乘积最小的算式是( )。
A.179×35 B.379×15 C.359×17 D.157×39
【答案】B
【分析】根据三位数乘两位数的计算方法,分别求出各个算式的积,再比较大小,找出乘积最小的算式。
【详解】A.179×35=6265
B.379×15=5685
C.359×17=6103
D.157×39=6123
5685<6103<6123<6265
故答案为:B
【点睛】熟练掌握三位数乘两位数的计算方法并正确计算是解决本题的关键。
13.321×29的积最接近( )。
A.9000 B.9600 C.9900
【答案】B
【分析】根据三位数乘两位数的估算,将321估成320,29估成30,计算出结果后选择合适的选项即可。
【详解】321×29≈320×30=9600
321×29的积最接近9600。
故答案为:B
14.已知买8千克苹果用去48元,每千克苹果的价钱是多少?这是在求( )。
A.单价 B.数量 C.总价
【答案】A
【分析】根据单价=总价÷数量,已知8千克苹果用去48元,用48÷8即可求出每千克苹果多少钱。据此选择即可。
【详解】48÷8=6(元)
每千克苹果的价钱是6元,这是在求单价。
故答案为:A
15.小立把用简便计算的方法算成,结果比原来( )。
A.少6 B.少228 C.多228 D.多234
【答案】B
【分析】乘法分配律两个数的和乘另一个数等于把这个数分别同两个加数相乘,再把两个积相加得数不变,用字母表示(a+b)×c=a×c+b×c,据此解答即可。
【详解】39×(a+6)
=39×a+39×6
39×a+6的结果比原来少了:6×39-6=234-6=228
故答案为:B
16.计算259×89时,先进行乘积的估计,正确的是( )。
A.最高位上是3 B.结果是五位数 C.比18000要小
【答案】B
【分析】整数乘法估算时,将乘数估成与其接近的整十数、整百数或几百几十数,再进行计算。将259估成260,89估成90,再相乘求积。
【详解】259×89≈260×90=23400
A.最高位上是2,原说法错误;
B.结果是五位数,原说法正确;
C.比18000要大,原说法错误;
故答案为:B
17.根据信息( )和( ),可以求出妈妈买了多少双袜子。
①买袜子共花了80元 ②每盒有5双 ③每双袜子8元
A.①③ B.①② C.②③
【答案】A
【分析】①给出袜子的总价钱,②给出每盒袜子的数量,③给出每双袜子的价钱,根据数量=总价÷单价,用买袜子花费的总钱数除以每双袜子的价钱,即可求出袜子的数量。据此选择条件。
【详解】80÷8=10(双)
妈妈买了10双袜子。根据信息①和③,可以求出妈妈买了多少双袜子。
故答案为:A
18.35×4=140,当因数35不变,因数4变成20时,积为( )。
A.1400 B.700 C.600
【答案】B
【分析】一个乘数不变,另一个乘数由4变成20,即乘数4扩大到原来的5倍,那么积也应扩大到原来的5倍,给140乘5即可求出现在的积。
【详解】20÷4=5
140×5=700
35×4=140,当因数35不变,因数4变成20时,积为700。
故答案为:B
19.浩浩在计算16×99时将算式转化成16×(99+1),这样计算的结果比正确结果( )。
A.多1 B.多16 C.少16
【答案】B
【分析】根据乘法分配律可知,16×(99+1)=16×99+16×1,再与算式16×99相减,可知相差16。据此解答。
【详解】16×(99+1)=16×99+16×1=16×99+16
16×99+16-16×99=16
这样计算的结果比正确结果多16。
故答案为:B
20.297×39的积最接近( )。
A.8000 B.10000 C.11000 D.12000
【答案】D
【分析】整数乘法的估算,根据四舍五入法,把因数看作与它接近的整千、整百、整十数,把297看成300,39看成40,计算出结果后,即可解答。
【详解】297×39
≈300×40
=12000
297×39的积最接近12000。
故答案为:D
21.小明在计算180×□时,把180错看成了30,要使积不变,□应( )。
A.减去20 B.加上20 C.除以6 D.乘6
【答案】D
【分析】根据积的变化规律可知,把180错看成了30,即180除以6,积应除以6。要使积不变,应乘6。据此解答。
【详解】小明在计算180×□时,把180错看成了30,要使积不变,□应乘6。
故答案为:D
22.a×b=3800,如果要使等式的结果是38,那么下面说法错误的是( )。
A.a除以10,b乘10 B.a、b同时除以10 C.a除以100,b不变
【答案】A
【分析】积的变化规律:(1)如果一个乘数乘或除以一个数(0除外),另一个乘数不变,那么积也乘或除以同一个数。(2)如果一个乘数乘一个数,另一个乘数除以同一个数(0除外),那么积不变;据此解答即可。
【详解】A.a除以10,b乘10,积不变,仍是3800,说法错误;
B.a、b同时除以10,积应除以100,3800÷100=38,说法正确;
C.a除以100,b不变,积应除以100,3800÷100=38,说法正确;
故答案为:A
23.如果c表示总价,a表示单价,b表示数量,下面式子中正确的是( )。
A. B. C.
【答案】C
【分析】根据单价×数量=总价进行解答即可。
【详解】A.这个式子表示总价=单价÷数量,错误;
B.这个式子表示单价=数量×总价,错误;
C.这个式子表示总价=单价×数量,正确;
故答案为:C
【点睛】本题考查价格问题,解答本题的关键是掌握价格问题中的数量关系。
24.甲数是130,乙数是甲数的16倍,求乙数比甲数多多少,列式正确的是( )。
A. B. C.
【答案】A
【分析】已知甲数是130,乙数是甲数的16倍,用甲数乘16,求出乙数,再用乙数减去甲数即可解答。
【详解】130×16-130
=130×(16-1)
=130×15
=1950
乙数比甲数多1950,所以列式正确的是130×(16-1)。
故答案为:A
25.下列算式中,与80×35×125的结果相等的是( )。
A.80×(35+125) B.35×(80×125)
C.80×125+35 D.80×125+80×35
【答案】B
【分析】乘法交换律:两个数相乘,交换因数的位置,它们的积不变;乘法结合律:三个数相乘,先把前面两个数相乘再与第三个数相乘,或先将后两个数相乘,再和第一个数相乘,结果一样;乘法分配律:两个数的和与另一个数相乘,相当于将这两个数分别与另一个数相乘再求二者的和,据此逐项进行判断。
【详解】A.80×(35+125)=80×35+80×125,与80×35×125的结果不相等;
B.35×(80×125)=35×80×125,与80×35×125的结果相等;
C.80×125+35,与80×35×125的结果不相等;
D.80×125+80×35=80×(125+35),与80×35×125的结果不相等。
故答案为:B
26.已知甲数=52×30,乙数=520×3,那么( )。
A.甲数>乙数 B.甲数<乙数 C.甲数=乙数
【答案】C
【分析】两数相乘,要使积不变,一个乘数扩大到原来的几倍,另一个乘数就要缩小到原来的几分之一,此题52扩大到原来的10倍是520,另一个乘数30缩小到原来的是3,此时的积是不变的。
【详解】52×30
=52×10×3
=520×3
所以甲数与乙数是相等的。
故答案为:C
27.图中点A表示的数可能是算式( )的积。
A.59×203 B.397×52 C.199×99
【答案】C
【分析】观察上图可知,点A在10000到20000之间靠近20000位置,点A表示的数小于并接近20000;把三位数看作整百数,两位数看作整十数,然后相乘,估算出各个算式的结果即可解答。
【详解】点A在10000到20000之间靠近20000位置,点A表示的数小于并且接近20000。
A.59×203≈60×200=12000,12000接近10000,不符合题意;
B.397×52≈400×50=20000,397×52>20000;不符合题意;
C.199×99≈200×100=20000,199×99<20000,并且接近20000,符合题意。
所以A表示的数可能是算式199×99的积。
故答案为:C
28.一列火车每小时行驶158千米,16小时可以行驶多少千米?竖式中箭头所指的这一步是在计算( )。
A.10小时行驶的千米数
B.1小时行驶的千米数
C.16小时行驶的千米数
【答案】A
【分析】观察竖式可知,158是每小时行驶的千米数,16是行驶的小时数,竖式中箭头所指“158”是158与16的十位上1的乘积,十位上的1表示10,所以“158”表示10小时行驶1580千米,据此即可解答。
【详解】根据分析可知,竖式中箭头所指的这一步是在计算10小时行驶的千米数。
故答案为:A
29.聪聪用计算器计算237×39时,发现计算器上的数字键“9”坏了,其它键完好,聪聪想出了一个计算方法,算出了正确结果,他可能采取的算法是( )。
A.237×39-1 B.237×40-237 C.237×40-40
【答案】B
【分析】根据乘法分配律的方法,将39写成(40-1),可以写成237×39=237×(40-1)=237×40-237,据此解答即可。
【详解】237×39
=237×(40-1)
=237×40-237
他可能采取的算法是237×40-237。
故答案为:B
30.小芳骑自行车每分钟行225米,12分钟行了多少米?竖式中箭头所指的这一步是在计算( )。
A.1分钟可以行多少米
B.10分钟可以行多少米
C.12分钟可以行多少米
【答案】B
【分析】三位数乘两位数的竖式计算方法:数位对齐,先用两位数的个位分别从右往左与三位数的每一位数相乘;再用两位数的十位分别从右往左与三位数的每一位数相乘,乘得结果的个位要与前面结果的十位对齐;然后两个结果相加就得到三位数乘两位数的结果了;要注意满十往前进位;
225是由数字12十位上的数字1与225的乘积,表示225个十,即10分钟骑行了2250米;据此选择即可。
【详解】由分析可知,竖式中箭头所指的这一步是在计算10分钟可以行多少米。
故答案为:B
31.下面乘法算式,与140×75的积不相等的是( )。
A.14×750 B.14×75 C.70×150
【答案】B
【分析】三位数乘两位数的计算方法:两位数乘三位数,先用两位数个位上的数去乘三位数,得数的末尾和两位数的个位对齐,再用两位数十位上的数去乘三位数,得数的末尾和两位数的十位对齐,然后把两次乘的结果加起来。当乘数末尾有零时,先算零前面的数,再在积的末尾添加对应个数的零。根据将原算式和每个选项的算式计算出得数,找出得数不相同的即可。
【详解】140×75=10500
A.14×750=10500
B.14×75=1050
C.70×150=10500
即与140×75的积不相等的是14×75。
故答案为:B
32.☆表示同一个数。25×(☆+4)与25×☆+4,它们之间的结果相差( )。
A.0 B.25 C.96
【答案】C
【分析】乘法分配律:a×(b+c)=a×b+a×c。由题意得,利用乘法分配律将式子25×(☆+4)展开,然后再对比它和25×☆+4的不同即可。
【详解】25×(☆+4)
=25×☆+25×4
=25×☆+100
对比25×☆+100和25×☆+4可知,两者相差:100-4=96。
故答案为:C
33.比825×93的结果大的算式是( )。
A.823×95 B.893×52 C.253×89
【答案】A
【分析】根据三位数乘两位数计算方法求出825×93的结果,再分别求出每个选项的结果,最后比较即可。
【详解】825×93=76725
A.823×95=78185,78185>76725,符合;
B.893×52=46436,46436<76725,不符合;
C.253×89=22517,22517<76725,不符合。
即823×95比825×93的结果大。
故答案为:A
34.与125×88的计算结果不相等的是( )。
A. B. C.
【答案】C
【分析】计算125×88时,可以把88转化为8×11,然后利用乘法结合律:a×(b×c)=(a×b)×c使计算简便;也可以把88转化为88+8,然后利用乘法分配律使计算简便。据此解答。
【详解】A.125×88
=125×(8×11)
=125×8×11,所以选项A的计算结果与原式计算结果相等。
B.125×88
=125×(80+8)
=125×80+125×8,所以选项B的计算结果与原式计算结果相等。
C.由B选项可知,125×88=125×80+125×8,它与算式125×80+8不一样。
故答案为:C
35.赵叔叔每分钟骑行315米,15分钟可以从单位骑行到家。下面竖式中箭头所指这一步是在计算( )。
赵叔叔1分钟骑行的距离
赵叔叔10分钟骑行的距离
C.赵叔叔从单位到家的距离
【答案】B
【分析】根据三位数乘两位数的计算方法,先要用两位数个位和十位上的数依次分别去乘三位数,用两位数哪一位上的数去乘,乘得的数的末位就和哪一位对齐,再把两次乘得的积相加以此计算。竖式中箭头所指这一步是两位数十位上的数1乘三位数的乘积,根据题目,两位数15是指15分钟,十位上的1是指10分钟,竖式中箭头所指的315后面有一个0,是3150米,据此解答。
【详解】A.赵叔叔1分钟骑行的距离是315米;
B.赵叔叔10分钟骑行的距离是10×315=3150(米);
C.赵叔叔从单位到家的距离是315×15=4725(米)。
故答案为:B
36.张大爷从果园采摘了23筐苹果,每筐装了115个,张大爷一共采摘了多少个苹果?竖式中箭头所指的这一步是在计算( )。
A.3筐一共有多少个苹果
B.20筐一共有多少个苹果
C.23筐一共有多少个苹果
【答案】B
【分析】竖式中箭头所指的230,是23十位上的2,表示2个10与115相乘,即20×115=2300,表示20筐一共有2300个苹果,据此解答即可。
【详解】张大爷从果园采摘了23筐苹果,每筐装了115个,张大爷一共采摘了2645个苹果。竖式中箭头所指的这一步是在计算20筐一共有多少个苹果。
故答案为:B
21世纪教育网(www.21cnjy.com)1 、三位数乘两位数的笔算方法:
(1)先用两位数个位上的数字去乘三位数,得数的末位和两位数的个位对齐;
(2)再用两位数十位上的数字去乘三位数,得数的末位和两位数的十位对齐;
(3)最后把两次乘得的积相加。
2、在乘法里,一个因数不变,另一个因数乘一个数或除以一个不为0的数,积也乘或除以相同的数。
3 、①因数末尾有0的乘法的笔算方法:先把0前面的数相乘,再看两个因数末尾一共有几个0,就在乘得的积的末尾添上几个0.
②整百整十数乘整十数的口算方法:先算出0前面的数相乘的积,再看两个因数末尾一共有几个0,就在乘得的积的末尾添上几个0.
4、乘法的估算方法:可以把每个因数都看成与它接近的整十、整百、整千。。。的数,也可以将两个因数中的任意一个因数看作与它接近的整十、整百、整千。。。的数来估算出结果大约是多少。
5、数量关系
①单价×数量=总价→总价÷数量=单价 总价÷单价=数量
②速度×时间=路程→路程÷时间=速度 路程÷速度=时间
6、乘法运算定律:
(1)乘法交换律:a×b=b×a 两个数相乘,交换因数的位置,积不变。
(2)乘法结合律:(a×b)×c=a×(b×c)三个数相乘,可以先把前两个数相乘,再乘第三个数 ,也可以先把后两个数相乘,再乘以第一个数,积不变。
(3)乘法分配率:(a+b)×c=a×c+b×c 两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(4)连除的性质:a÷b÷c=a÷(b×c)一个数连续除以两个数,等于除以这两个数的积。
【考点精讲1】一列火车每小时行驶145千米,16小时可以行驶多少千米?如图竖式中箭头所指的这一步是在计算( )。
A.10小时行驶的千米数
B.1小时行驶的千米数
C.16小时行驶的千米数
【答案】A
【分析】根据三位数乘两位数的计算方法:先用两位数个位上的数6去乘三位数145,即6个一乘145得870个一,就是870,表示6小时行驶的千米数是870千米;再用两位数十位上的数1去乘三位数145,即1个十乘145得145个十,就是1450,表示10小时行驶的千米数是1450千米;最后把两次乘得的积相加。据此解答。
【详解】根据分析可知:
竖式中箭头所指的这一步是在计算10小时行驶的千米数。
故答案为:A
【考点精讲2】.如果甲数=320×80,乙数=32×800,那么( )。
A.甲数>乙数 B.甲数=乙数 C.甲数<乙数
【答案】B
【分析】根据三位数乘两位数的计算,分别计算出两个算式的结果,据此比较即可。
【详解】320×80=25600
32×800=25600
320×80=32×800,甲数=乙数。
故答案为:B
【考点精讲3】已知4□2×13表示一个三位数乘两位数,那么( )有可能是算式的积。
A.4223 B.5226 C.12336
【答案】B
【分析】根据题意可知,4□2是个三位数,则□的取值范围是0~9,则计算出402×13和492×13的积,再和选项的数进行比较即可解答。
【详解】402×13=5226,492×13=6396
A.4223<5226,不是算式的积;
B.402×13=5226,符合题意;
C.12336>6396,不是算式的积;
故答案为:B
【点睛】掌握三位数乘两位数的计算方法是解题的关键。
【考点精讲4】图1是沙漠中的一块绿地,图2中箭头所指的部分表示( )。
A.沙蒿的面积 B.沙打旺的面积 C.绿地的总面积 D.绿地的周长
【答案】B
【分析】三位数乘两位数的笔算法则:先用两位数的个位分别与三位数的每一位数相乘,乘得的积的末尾和个位对齐。再用两位数的十位分别与三位数的每一位数相乘,乘得的积的末尾和十位对齐。最后,将两次乘得的积相加。
【详解】由题意得,计算316×68时,先用68个位上的8去乘316,即316×8=2528。其中,316表示这块绿地的长,8表示沙打旺的宽,所以316×8=2528算的是沙打旺的面积。
故答案为:B
【考点精讲5】一盒牛奶净含量是220克,18盒牛奶的净含量一共约多少克?下面估算准确的是( )。
A. B. C.
【答案】B
【分析】一盒牛奶的净含量是220克,18乘220即可求出18盒牛奶的净含量,此题要求的是估算,估算时把18看作20,计算出220与20的积即可。
【详解】220×18≈220×20=4400(克)
故答案为:B
【考点精讲6】下列算式中,( )的积与340×22的积相等。
A.170×88 B.680×44 C.680×11 D.340×11
【答案】C
【分析】一个因数扩大(或缩小)若干倍(0除外),另一个因数缩小(或扩大)相同的倍数,积不变;据此解答。
【详解】A.由变为,是一个因数340缩小了2倍,另一个因数22扩大了4倍,根据积的变化规律可知,积会扩大2倍,结果不相等;
B.由变为,是一个因数340扩大了2倍,另一个因数22扩大了2倍,根据积的变化规律可知,积会扩大4倍,结果不相等;
C.由变为,是一个因数340扩大了2倍,另一个因数22缩小了2倍,根据积的变化规律可知,积不变,结果相等;
D.由变为,是一个因数340不变,另一个因数22缩小了2倍,根据积的变化规律可知,积会缩小2倍,结果不相等。
故答案为:C
【考点精讲7】已知买a盒彩笔共花b元钱(a、b不等于0)。求“每盒彩笔多少元”用到的数量关系式是( )。
A.单价×数量=总价 B.总价÷数量=单价
C.总价÷单价=数量 D.不确定
【答案】B
【分析】已知买a盒彩笔共花b元钱;a表示数量,b表示总价,求“每盒彩色多少元”,就是求每盒彩笔的单价,运用除法解答。
【详解】运用除法,总价÷数量=单价,求出每盒彩笔多少元。
故答案为:B
【考点精讲8】下面四种不同物体运行的速度如下,速度最快的是( )。
A.150千米/时 B.200米/分 C.2千米/秒 D.200千米/分
【答案】D
【分析】根据1千米=1000米,1时=60分=360秒,把这些速度单位统一成米/时再比较大小,150千米/时乘1000,200米/分乘60,2千米/秒乘1000再乘360,200千米/分乘1000再乘60,再比较数大小即可。
【详解】150千米/时×1000=150000(米/时)
200米/分×60=12000(米/时)
2千米/秒×1000×360=720000(米/时)
200千米/分×1000×60=12000000(米/时)
12000000>720000>150000>12000
200千米/分速度最快
故答案为:D
【考点精讲9】25×98×4=25×4×98应用了( )。
A.乘法交换律 B.乘法结合律 C.乘法分配律
【答案】A
【分析】两个数相乘,交换因数的位置,它们的积不变,叫做乘法交换律;
乘法结合律是指三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另一个数相乘,积不变的乘法运算方法;
乘法分配律是指两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。据此选择即可。
【详解】计算25×98×4=25×4×98时,是把4和98交换位置,所以应用的运算定律是乘法交换律。
故答案为:A
【考点精讲10】计算25×28最简便的方法是( )。
A.25×20+25×8 B.25×30-25×2 C.25×4×7 D.25×20×8
【答案】C
【分析】在25×28的式子中有25,而25与4相乘的积是100,且28可以分解为4与7的积,再根据乘法结合律先求出25与4的积,所得的积再乘7,这是最简便的方法。
【详解】25×28
=25×4×7
=100×7
=700
故答案为:C
【点睛】在一个式子中有几个数相乘,且其中2个数的积正好是整十数,那么就可以采用乘法结合律会达到简算的效果。
【考点精讲11】学校图书馆买了两种书,《我爱发明》每本22元,《童话故事》每本18元,这两种书各买25本,共要花多少元?正确列式为( )。
A.22+18×25 B.22×25-18×25 C.(22+18)×25
【答案】C
【分析】《我爱发明》每本价钱乘买的本数,可以算出买《我爱发明》花了(22×25)元;《童话故事》每本价钱乘买的本数,可以算出买《童话故事》花了(18×25)元。买《我爱发明》花的钱数加上买《童话故事》花的钱数,可以算出一共要花(22×25+18×25)元。
也可以先算买一本《我爱发明》和一本《童话故事》花了(22+18)元,买一本《我爱发明》和一本《童话故事》花的钱数乘这两种书各买的本数,即可算出一共要花(22+18)×25(元)。
【详解】22×25+18×25
=(22+18)×15
=40×25
=1000(元)
A.22+18×25计算的是买1本《我爱发明》和25本《童话故事》花了多少元。
B.22×25-18×25计算的是买25本《我爱发明》比买25本《童话故事》多花了多少元。
C.(22+18)×25计算的是买25本《我爱发明》和买25本《童话故事》一共花了多少元。
正确列式为(22+18)×25。
故答案为:C
【考点精讲12】欢欢的计算器上数字键“6”坏了,要用这个计算器算出“288÷36”的得数,可以计算( )。
A.288÷18×2 B.288÷6÷6 C.288÷4÷9
【答案】C
【分析】计算器上数字键“6”坏了,因此不能使用数字键“6”,即将36写成4×9,然后运用整数除法的性质进行选择即可。一个数连续除以两个数,可以用这个数除以后面两个数的积。
【详解】288÷(4×9)=288÷4÷9
故答案为:C
【点睛】熟练掌握整数除法的性质是解答此题的关键。
一、选择题
1.288×27=( )。
A.7776 B.7775 C.7774
2.657×47=( )。
A.30877 B.30869 C.30879
3.(125+6)×8=125×8+6×8,这是根据( )。
A.乘法交换律 B.乘法分配律 C.乘法结合律
4.和225×80的结果不相等的算式是( )。
A.80×225 B.450×40 C.45×500
5.如图中点A表示的数可能是下面算式( )的积。
A.198×39 B.398×49 C.498×59
6.学校图书馆买来《少儿百科全书》12本,每本24元,后来又买了5本,一共用去多少元?列式为( )。
A.12×24 B.12×24×5 C.(12+5)×24 D.12×24-5×24
7.打字员张阿姨平均每分钟打112个字,小明用竖式计算了她25分钟可以打多少个字。竖式中箭头所指的这一步是在计算( )。
A.20分钟打字的个数
B.5分钟打字的个数
C.25分钟打字的个数
8.在999×99中,一个因数扩大10倍,另一个因数不变,积( )。
A.扩大10倍 B.缩小 C.不变
9.364×(297-245)=( )。
A.18923 B.18928 C.18926
10.丹丹一家自驾游想早点到达目的地,小轿车如果速度是原来的4倍,那么所用时间是原来的( )。
A.2倍 B. C.4倍
11.小张要买30个鼠标,他带了3000元,买价格是( )元的鼠标最合适。
A.97 B.102 C.198
12.用1、3、5、7、9组成一个三位数和一个两位数,乘积最小的算式是( )。
A.179×35 B.379×15 C.359×17 D.157×39
13.321×29的积最接近( )。
A.9000 B.9600 C.9900
14.已知买8千克苹果用去48元,每千克苹果的价钱是多少?这是在求( )。
A.单价 B.数量 C.总价
15.小立把用简便计算的方法算成,结果比原来( )。
A.少6 B.少228 C.多228 D.多234
16.计算259×89时,先进行乘积的估计,正确的是( )。
A.最高位上是3 B.结果是五位数 C.比18000要小
17.根据信息( )和( ),可以求出妈妈买了多少双袜子。
①买袜子共花了80元 ②每盒有5双 ③每双袜子8元
A.①③ B.①② C.②③
18.35×4=140,当因数35不变,因数4变成20时,积为( )。
A.1400 B.700 C.600
19.浩浩在计算16×99时将算式转化成16×(99+1),这样计算的结果比正确结果( )。
A.多1 B.多16 C.少16
20.297×39的积最接近( )。
A.8000 B.10000 C.11000 D.12000
21.小明在计算180×□时,把180错看成了30,要使积不变,□应( )。
A.减去20 B.加上20 C.除以6 D.乘6
22.a×b=3800,如果要使等式的结果是38,那么下面说法错误的是( )。
A.a除以10,b乘10 B.a、b同时除以10 C.a除以100,b不变
23.如果c表示总价,a表示单价,b表示数量,下面式子中正确的是( )。
A. B. C.
24.甲数是130,乙数是甲数的16倍,求乙数比甲数多多少,列式正确的是( )。
A. B. C.
25.下列算式中,与80×35×125的结果相等的是( )。
A.80×(35+125) B.35×(80×125)
C.80×125+35 D.80×125+80×35
26.已知甲数=52×30,乙数=520×3,那么( )。
A.甲数>乙数 B.甲数<乙数 C.甲数=乙数
27.图中点A表示的数可能是算式( )的积。
A.59×203 B.397×52 C.199×99
28.一列火车每小时行驶158千米,16小时可以行驶多少千米?竖式中箭头所指的这一步是在计算( )。
A.10小时行驶的千米数
B.1小时行驶的千米数
C.16小时行驶的千米数
29.聪聪用计算器计算237×39时,发现计算器上的数字键“9”坏了,其它键完好,聪聪想出了一个计算方法,算出了正确结果,他可能采取的算法是( )。
A.237×39-1 B.237×40-237 C.237×40-40
30.小芳骑自行车每分钟行225米,12分钟行了多少米?竖式中箭头所指的这一步是在计算( )。
A.1分钟可以行多少米
B.10分钟可以行多少米
C.12分钟可以行多少米
31.下面乘法算式,与140×75的积不相等的是( )。
A.14×750 B.14×75 C.70×150
32.☆表示同一个数。25×(☆+4)与25×☆+4,它们之间的结果相差( )。
A.0 B.25 C.96
33.比825×93的结果大的算式是( )。
A.823×95 B.893×52 C.253×89
34.与125×88的计算结果不相等的是( )。
A. B. C.
35.赵叔叔每分钟骑行315米,15分钟可以从单位骑行到家。下面竖式中箭头所指这一步是在计算( )。
赵叔叔1分钟骑行的距离
赵叔叔10分钟骑行的距离
C.赵叔叔从单位到家的距离
36.张大爷从果园采摘了23筐苹果,每筐装了115个,张大爷一共采摘了多少个苹果?竖式中箭头所指的这一步是在计算( )。
A.3筐一共有多少个苹果
B.20筐一共有多少个苹果
C.23筐一共有多少个苹果
21世纪教育网(www.21cnjy.com)