2024-2025学年北师大版五年级数学下册第二单元长方体(一)(情境题自测卷)(含解析)

文档属性

名称 2024-2025学年北师大版五年级数学下册第二单元长方体(一)(情境题自测卷)(含解析)
格式 doc
文件大小 1.0MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2025-03-23 17:30:59

图片预览

文档简介

/ 让教学更有效 精品试卷 | 数学学科
2024-2025学年北师大版五年级数学下册(情境题自测卷)
第二单元长方体(一)
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.学校要粉刷一间教室的四壁和天花板,教室长8米,宽6米,高3米,门窗面积共15平方米,工人师傅想知道需要粉刷的面积是多少平方米?( )2·1·c·n·j·y
A.120平方米 B.129平方米 C.117平方米 D.144平方米
2.小明将“仁、义、礼、智、信、孝”这六个字写在一个正方体的六个面上,下图是这个正方体的平面展开图,在原正方体中和“义”相对的字是( )。
A.礼 B.智 C.孝 D.仁
3.李叔叔喜欢养鱼。他要做一个无盖的长方体玻璃鱼缸,求至少要用多少平方米的玻璃,这是求这个长方体鱼缸的( )。
A.体积 B.表面积 C.容积 D.侧面积
4.乐乐买了4幅挂屏,每幅都装在盒子里寄给朋友,每个盒子的长、宽、高分别是20cm、15cm、6cm。用最节约纸的方式包装,至少需要( )的包装纸。
A.2280 B.2520
C.3240 D.3540
5.体育课常使用一种长方体海绵垫,在学生运动过程中进行保护缓冲。现需要将四个海绵垫叠放后,使用遮罩进行包裹收纳,最节省遮罩的叠放方式是( )。
A. B. C.
6.传承红色基因,才能培养担当民族复兴大任的时代新人。如图所示的正方体展开图中,“红”字对面的字是( )。
A.传 B.色 C.基 D.因
二、填空题
7.学校发了新书,笑笑要在它的外面(三个面)粘上一层书皮,分别是正面、背面、左侧面(如图),包装这本数学书,至少需要( )平方厘米的书皮。
8.做一个无盖的长方体鱼缸,用了下面几块长方形玻璃。
(1)用上面的( )号玻璃做鱼缸底最合适。(填序号)
(2)做好这个鱼缸,至少需要( )平方分米的玻璃。
9.一个长方体的无盖鱼缸,从前面和上面看,看到的都是一个长35cm、宽20cm的长方形,制作这样一个无盖的鱼缸至少需要( )cm2的玻璃。www.21-cn-jy.com
10.陈师傅制作一个长方体灯笼框架,长是20cm,宽是15cm,高是12cm,他制作一个这样的框架至少需要长度是( )cm的木条。
11.有8个棱长为1米的正方体纸箱,要将这些纸箱堆放在仓库里,仓管设计了4种放在墙角处的摆放方式(如下图)。
(1)占地面积最大的是第( )种摆法,占地面积是( )。
(2)露在外面的面积最小的是第( )种摆法,这种摆法露在外面的面积是( )。
12.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6。小明、小刚、小红三人从不同的角度去观察这个正方体,观察结果如图所示,则数字3对面是数字( )。

13.4个小正方体堆放在墙角处,图①有( )个面露在外面,图②有( )个面露在外面。发现相同个数的小正方体( )不同,( )也不同。
三、解答题
14.一个长方体形状的游泳池,长50米,宽25米,深2米。如果要给游泳池的四周和底面贴上瓷砖,需要多少平方米的瓷砖?
15.如图是一个长方体盒子。(上、下两面近似认为一致,单位:厘米)
(1)这个盒子的上面是什么形状?长和宽各是多少?哪个面和它形状、大小都相同?左侧面呢?
(2)哪个面的长是36厘米、宽是10厘米?
16.航模组的同学在特长活动的时候制作模型,把一个长方体的6个面都涂上蓝色,然后把这个长方体切割成棱长为1厘米的小正方体。如果长方体的长、宽、高分别是10厘米、6厘米、5厘米,那么3面、2面、1面涂色的小正方体各有多少个?
17.笑笑用卡纸准备给快过生日的妈妈做一个礼物包装盒,如下图(单位:厘米)。如何计算出“做一个这样的包装盒至少要用多少卡纸”?笑笑是这样想的:
(1)8×5计算出( )面的面积。
(2)12×8计算出( )面的面积。
(3)12×5计算出( )面的面积。
(4)8×5+12×8+12×5计算出( )的面积。
(5)(8×5+12×8+12×5)×2计算出( )的面积。
18.收纳是一个重要的生活习惯,学会收纳能让我们的生活井井有条。妈妈把杂志分类整理打包放进储物间,如图是她捆好后的样子,打结时两端各留10厘米长的绳子,妈妈一共用掉了多少米绳子?
19.淘气将正方体按下面的方式摆放在桌面上。
(1)填一填。
小正方体的个数 1 2 3 4
露在外面的面/个
(2)你发现了什么规律?
(3)根据你发现的规律,10个这样的小正方体这样摆放,有( )个露在外面的面。
20.为营造绿色环保氛围,儿童公园建了一座长25米,宽16米,高8米的长方体环保宣传书屋,现需要在这个书屋的四周外墙涂上环保漆,去除门窗面积11.5平方米,请问需要涂环保漆的面积是多少平方米?21*cnjy*com
21.小明家新买了一台洗衣机,请你帮他算一算。
(1)放置这个洗衣机根占多大的面积?
(2)如果给洗衣机缝制一个布罩需要多大面积的布块?
22.小明家客厅的形状是一个长方体,长8米,宽4米,高3米。要在客厅四周的墙上贴墙纸(门窗面积为14平方米),至少要用墙纸多少平方米?【来源:21cnj*y.co*m】
23.一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸(如图),这张商标纸的面积至少有多少平方厘米?21*cnjy*com
《2024-2025学年苏教版五年级数学下册第二单元长方体(一)(情境题自测卷)》参考答案
1.C
【分析】根据题意,粉刷教室的四壁和天花板,即粉刷的是长方体的上面、前后面、左右面共5个面;根据“长×宽+长×高×2+宽×高×2”求出这5个面的面积之和,再减去门窗的面积,就是需粉刷的面积。21教育名师原创作品
【详解】8×6+8×3×2+6×3×2
=48+48+36
=132(平方米)
132-15=117(平方米)
需要粉刷的面积是117平方米。
故答案为:C
2.C
【分析】对于正方体的平面展开图,要确定相对的面,可以通过分析展开图的折叠方式来判断在这种2-3-1型的展开图中,“相间、Z端是对面”。
【详解】观察这个展开图,“义”字和“孝”字在展开图中处于“Z”字形的两端。根据正方体展开图相对面的判断规则,所以在原正方体中和“义”相对的字是“孝”。
故答案为:C
3.B
【分析】物体表面面积的总和,叫做物体的表面积,求玻璃的面积就是求无盖的长方体玻璃鱼缸5个面的面积和,即求这个长方体鱼缸的表面积。
【详解】根据分析,求至少要用多少平方米的玻璃,这是求这个长方体鱼缸的表面积。
故答案为:B
4.A
【分析】根据题意可知,最节省纸的包装方式,就是把4个盒子的最大面,即(20×15)这个面叠放在一起,因为叠在一起,长和宽不变,高度增加,即6+6+6+6,结合长方体的表面积公式:(长×宽+长×高+宽×高)×2,代入数据,计算即可。
【详解】高:6+6+6+6
=12+6+6
=18+6
=24(cm)
(20×15+20×24+15×24)×2
=(300+480+360)×2
=1140×2
=2280()
故答案为:A
5.A
【分析】根据题意,结合图示可知,把最大面叠在一起,即长方体海绵垫的上下面,这样的表面积最小,所以选项A所有海绵垫上下叠在一起,减少了6个上下面,最能节省遮罩。选项B的叠放方式减少了4个上下面和4个海绵垫的前后面,不是最节省遮罩的;选项C的叠放方式减少了4个海绵垫的前后面和4个海绵垫的左右面,也不符合题意。据此选择即可。21教育网
【详解】
表面积最小即最节省遮罩,所以最节省遮罩的叠放方式是。
故答案为:A
6.C
【分析】根据正方体展开图的特征,符合“1-4-1”结构,中间的4个小正方形,相对的面会格着一个小正方形,所以承和色相对,红和基相对,剩下的转和因相对,据此解答。
【详解】由分析可知:
“红”字对面的字是“基”。
故答案为:C
7.954.2
【分析】根据题意,长方形的面积=长×宽,数学书的正面和北面(后面)是完全相同的长方形,左侧面的长是26厘米,宽是0.7厘米,把数据代入求出这三个面的面积即可。
【详解】26×18×2+26×0.7
=468×2+18.2
=936+18.2
=954.2(平方厘米)
所以至少需要954.2平方厘米。
8.(1)①
(2)90
【分析】(1)根据题意,选择只有一个的尺寸作为鱼缸的底,选择长和宽匹配的长方形作为鱼缸的围边,以确定能组成无盖长方体鱼缸。
(2) 求至少需要多少平方分米的玻璃,就是求这个无盖长方体鱼缸的表面积,即五个面的面积之和,即为①+②+③+④+⑤玻璃的和,依据长方形面积公式:长方形面积=长×宽。将数据代入公式计算即可。
【详解】(1)对比5个长方形,单独尺寸的只有①长方形玻璃,所以选择①作为鱼缸的底,其它玻璃作为围边。用上面的①号玻璃做鱼缸底最合适。
(2)鱼缸的表面积:
3×6+4×6+3×4+4×6+3×4
=18+24+12+24+12
=42+12+24+12
=54+24+12
=78+12
=90(平方分米)
做好这个鱼缸,至少需要90平方分米的玻璃。
9.2900
【分析】由题意可知,这个长方体的长是长35cm,宽20cm,高20cm,由于这个鱼缸无盖,所以上面的长方形不用算,即,代入数据计算即可。
【详解】35×20+35×20×2+20×20×2
=700+1400+800
=2900(平方厘米)
制作这样一个无盖的鱼缸至少需要2900平方厘米的玻璃。
10.188
【分析】求需要木条的长度,就是求长方体灯笼的棱长总和,根据长方体棱长总和公式:棱长总和=(长+宽+高)×4,代入数据,即可解答。21世纪教育网版权所有
【详解】(20+15+12)×4
=(35+12)×4
=47×4
=188(cm)
陈师傅制作一个长方体灯笼框架,长是20cm,宽是15cm,高是12cm,他制作一个这样的框架至少需要长度是188cm的木条。21cnjy.com
11.(1) 一 8
(2) 三 12
【分析】(1)占地面积即为底面积,边长为1米的正方形的面积为1平方米,第一种摆法的底面为8个正方形 ,那么占地面积为8平方米;第二种摆法的底面为4个正方形 ,那么占地面积为4平方米;第三种摆法的底面为4个正方形 ,那么占地面积为4平方米;第四种摆法的底面为6个正方形 ,那么占地面积为6平方米;据此解答。
(2)因为边长为1米的正方形的面积为1平方米,第一种摆法把它整体看成一个大长方体,上面有8个面露在外面,前面有8个面露在外面,右面有1个面露在外面,即2×8+1=17(平方米);第二种摆法:把它整体看成一个大长方体,上面有4个正方形露在外面,前面有8个正方形露在外面,右面有2个正方形露在外面,即4+8+2=14(平方米);第三种摆法:把它整体看成一个大正方体,上面、前面、右面各有4个面露在外面,即3×4=12(平方米);第四种摆法:这个图形上面有6个正方形露在外面,前面有5个正方形露在外面,右面有5个正方形露在外面,即5×2+6=16(平方米);再比较大小即可求解。
【详解】(1)8×1=8(平方米)
4×1=4(平方米)
4×1=4(平方米)
6×1=6(平方米)
因为8>6>4,所以占地面积最大的是第一种摆法,占地面积是8。
(2)2×8+1
=16+1
=17(平方米)
4+8+2
=12+2
=14(平方米)
3×4=12(平方米)
5×2+6
=10+6
=16(平方米)
因为12<14<16<17,所以露在外面的面积最小的是第三种摆法,这种摆法露在外面的面积是12。
【点睛】本题考查正方体露在外面的面的面积计算,学生需熟练掌握。
12.6
【分析】观察第2个图形可以发现:3的对面不是1或2;观察第3个图形可以发现,3的对面也不是4或5。那么数字3对面是数字6。2-1-c-n-j-y
【详解】通过观察、分析可知,数字3对面是数字6。
【点睛】本题考查推理问题。根据数字3相邻面上的数字,运用排除法即可推理出3对面的数字。
13. 9 8 摆法 露在外面的面的个数
【分析】通过数图①露在外面的面,前面、左面、和上面分别有4个面、3个面和2个面露在外面,共有4+3+2=9(个)个面露在外面;通过数图②露在外面的面,前面、左面、和上面分别有2个面、2个面和4个面露在外面,共有2+2+4=8(个)面露在外面。据此得出结论。【出处:21教育名师】
【详解】根据分析可知:4个小正方体堆放在墙角处,图①有9个面露在外面,图②有8个面露在外面。发现相同个数的小正方体摆法不同,露在外的面的个数也不同。
【点睛】此题考查了露在外的面的个数,锻炼了学生的空间想象力和抽象思维能力。
14.1550平方米
【分析】求需要瓷砖的面积就是求长方体的表面积,长方体的表面积=(长×宽+宽×高+长×高)×2,因为上面不需要贴瓷砖,所以需要减去一个底面积,据此解答。
【详解】(50×25+50×2+25×2)×2-50×25
=(1250+100+50)×2-50×25
=1400×2-50×25
=2800-1250
=1550(平方米)
答:需要1550平方米的瓷砖。
15.(1)长方形;长36厘米;宽28厘米;下面;右侧面
(2)前面和后面
【分析】长方体的特征:长方体有6个面,有三组相对的面完全相同,分别是上下面、前后面和左右面。一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同。【版权所有:21教育】
【详解】(1)这个盒子的上面是长方形,长是36厘米,宽是28厘米。下面和它形状、大小都相同。左侧面和右侧面的形状、大小都相同。
(2)前面和后面的长是36厘米、宽是10厘米。
16.3面涂色的有8个;2面涂色的有60个;1面涂色的有136个。
【分析】3面涂色的小正方体在长方体的顶点位置,共8个;2面涂色的小正方体在每条棱的中间,即在每条棱除顶点处的两个小正方体外的中间位置,共有(10-2)×4+(6-2)×4+(5-2)×4=60(个);1面涂色的小正方体在每个面上除棱上的小正方体外的中间位置,在长10厘米、宽6厘米的面上,一面涂色的小正方形组成一个长10-2=8(厘米)、宽6-2=4(厘米)的长方形,这个长方形中共有8×4÷(1×1)=32(个)小正方形,同理可求出在长10厘米、宽5厘米的面上和长6厘米、宽5厘米的面上涂色的小正方形的个数。小正方形的个数即小正方体的个数,所以1面涂色的小正方体有(10-2)×(6-2)×2+(10-2)×(5-2)×2+(6-2)×(5-2)×2=136(个)。
【详解】(10-2)×4+(6-2)×4+(5-2)×4
=8×4+4×4+3×4
=32+16+12
=48+12
=60(个)
(10-2)×(6-2)×2+(10-2)×(5-2)×2+(6-2)×(5-2)×2
=8×4×2+8×3×2+4×3×2
=32×2+24×2+12×2
=64+48+24
=112+24
=136(个)
答:3面涂色的有8个,2面涂色的有60个,1面涂色的有136个。
17.(1)上
(2)正
(3)左
(4)正、上、左三个面
(5)长方体六个面
【分析】我们需要明确长方体表面积的计算方法。长方体有6个面,分别为正面、后面、左面、右面、上面和下面。相对的两个面面积相等。
(1)根据题意,8×5是指上面或下面长方形的长和宽,依据长方形的面积公式=长×宽,据此解答。
(2)根据题意,12×8是指正面或后面长方形的长和宽,依据长方形的面积公式=长×宽,据此解答。
(3)根据题意,12×5是指左面或右面长方形的长和宽,依据长方形的面积公式=长×宽,据此解答。
(4)根据题意,8×5+12×8+12×5是指一个正面、一个上面、一个左面的面积之和。
(5)根据题意,(8×5+12×8+12×5)×2,依据长方体表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2
【详解】(1)8×5计算出上面的面积;
(2)12×8计算出正面的面积;
(3)12×5计算出左面的面积;
(4)8×5+12×8+12×5计算出正、上、左三个面的面积;
(5)(8×5+12×8+12×5)×2计算出长方体六个面的面积。
18.1.62米
【分析】在计算捆一圈的长度时,需要考虑到杂志的长、宽、高,分别计算出两个长、两个宽和四个高的长度,再相加得到总长度。然后,再加上打结时两端预留的绳子长度,即可得到妈妈一共用掉的绳子长度。最后,将长度单位从厘米转换为米。21·世纪*教育网
【详解】2×26+2×21+4×12
=52+42+48
=142(厘米)
142+10×2
=142+20
=162(厘米)
162厘米=1.62米
答:妈妈一共用掉了1.62米绳子。
19.(1)5;8;11;14;(2)见详解;(3)32
【分析】(1)观察图形,小正方体的个数为1时,露在外面的面有5个面,小正方体的个数为2时,露在外面的面有(5+3)个面,小正方体的个数为3时,露在外面的面有(5+3×2)个面,小正方体的个数为4时,露在外面的面有(5+3×3)个面,据此完成填空。
(2)通过前面计算出来的数据,我们可以看出随着小正方体的个数的增多,露在外面的面的个数也在增加,具体的变化规律是当前图形露在外面的面的个数比前一个露在外面的面的个数要多3个。
(3)依次类推,小正方体的个数为n时,露在外面的面有个面,当n=10时,把数据代入,即可求出有多少个露在外面的面。www-2-1-cnjy-com
【详解】(1)5+3=8(个)
5+3×2
=5+6
=11(个)
5+3×3
=5+9
=14(个)
填表如下:
小正方体的个数 1 2 3 4
露在外面的面/个 5 8 11 14
(2)答:我发现当前图形露在外面的面的个数比前一个露在外面的面的个数要多3个。
(3)小正方体的个数为n时,露在外面的面有个面,
当n=10时,


=5+27
=32(个)
【点睛】此题的解题关键是利用数与形的结合,通过观察图形,把图形中变化的规律转化成数字,多多练习,培养数感。21·cn·jy·com
20.644.5平方米
【分析】书屋的四周外墙涂上环保漆,就是求长方体4个侧面的面积和,再减去门窗面积即可。
【详解】书屋外墙面积:
(25×8+16×8)×2
=(200+128)×2
=328×2
=656(平方米)
总共需要涂环保漆的面积:
656-11.5=644.5(平方米)
答:需要涂环保漆的面积是644.5平方米。
【点睛】本题考查了长方体表面积的计算,并且需要结合本题的实际确定求的是哪些面的面积。
21.(1)3000cm2;(2)2.17m2
【分析】(1)洗衣机要占多大的面积就是求长方体的底面积;
(2)这个布罩是有5个面组成的,即一个上面和4个侧面,缺少的是底面。根据长方体的表面积的计算方法,求这5个面的总面积即可;
【详解】(1)(cm2)
答:放置这台洗衣机要占3000cm2的底面积。
(2)
(cm2)
(m2)
答:缝制一个布罩要2.17m2的布块。
【点睛】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题。
22.58平方米
【分析】根据题意可得,所用墙纸的面积=长方体侧面的面积和(即长×高×2+宽×高×2)-门窗面积。
【详解】8×3×2+4×3×2
=48+24
=72(平方米)
72-14=58(平方米)
答:至少要用墙纸58平方米。
【点睛】考查了正方体表面积的灵活应用,学生应掌握。
23.1232厘米
【分析】长方体的侧面积也就是侧面的四个面的面积之和。即(长×高+宽×高)×2代入数据解答即可。
【详解】(17×22+11×22)×2
=(374+242)×2
=1232(平方厘米)
答:这张商标纸的面积至少有1232平方厘米。
【点睛】长方体的侧面展开是一个长方形,长是底面周长,宽是长方体的高,所以长方体的侧面积也可用底面周长×高来计算。【来源:21·世纪·教育·网】
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世教育网(www.1cnjy.com)