中小学教育资源及组卷应用平台
【重难点突破】中考数学压轴题解题模型精讲与真题演练
专题02 胡不归模型(几何最值模型)
模型解读 1
常见类型讲解 2
1、模型建立 2
2、问题分析 2
3、问题解决 3
4、模型总结 3
真题演练 3
巩固练习 5
压轴真题强化 6
从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢?倘若有可能,他应该选择怎样的路线呢?这就是风靡千年的“胡不归问题”。
法国著名数学家费马(Fermat,1601-1665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题.费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、相辅相成的,我们应该多多涉猎各方面知识,这样才能最大限度提升自我,走向成功。
1、模型建立
一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V12、问题分析
,记,即求BC+kAC的最小值.
3、问题解决
构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.
过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.
4、模型总结
在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。
(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是 .
(2022·广东广州·统考中考真题)如图,在菱形ABCD中,∠BAD = 120°,AB = 6,连接BD .
(1)求BD的长;
(2)点E为线段BD上一动点(不与点B,D重合), 点F在边AD上,且BE=DF,
①当CE丄AB时,求四边形ABEF的面积;
②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.
(2020·四川乐山·中考真题)已知抛物线与轴交于,两点,为抛物线的顶点,抛物线的对称轴交轴于点,连结,且,如图所示.(1)求抛物线的解析式;(2)设是抛物线的对称轴上的一个动点.①过点作轴的平行线交线段于点,过点作交抛物线于点,连结、,求的面积的最大值;②连结,求的最小值.
1、如图,在中,,,.,分别是边,上的动点,且,则的最小值为 .
2、已知在等腰中,,.,连接,在的右侧做等腰,其中,,连接E,则的最小值为 (用含的代数式表示).
3、如图1,在平面直角坐标系中,直线经过点,与x轴交于点,点C为中点,反比例函数刚好经过点C.将直线绕点A沿顺时针方向旋转得直线,直线与x轴交于点D.
(1)求反比例函数解析式;
(2)如图2,点Q为射线以上一动点,当取最小值时,求的面积;
(3)将沿射线方向进行平移,得到且刚好落在y轴上,已知点M为反比例函数上一点,点N为y轴上一点,若以M,N,B,为顶点的四边形为平行四边形,直接写出所有满足条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
一、单选题
1.(2023·安徽合肥·一模)如图,为等边三角形,平分,,点E为上动点,连接,则的最小值为( )
A.1 B. C. D.2
2.(2021·辽宁锦州·二模)如图,菱形的边长为5,对角线的长为,为上一动点,则的最小值为( )
A.4 B.5 C. D.
二、填空题
3.(2023·湖南湘西·中考真题)如图,是等边三角形的外接圆,其半径为4.过点B作于点E,点P为线段上一动点(点P不与B,E重合),则的最小值为 .
4.(2023·辽宁锦州·中考真题)如图,在中,,,,按下列步骤作图:①在和上分别截取、,使.②分别以点D和点E为圆心,以大于的长为半径作弧,两弧在内交于点M.③作射线交于点F.若点P是线段上的一个动点,连接,则的最小值是 .
三、解答题
5.(2024·四川德阳·中考真题)如图,抛物线与轴交于点和点,与轴交于点.
(1)求抛物线的解析式;
(2)当时,求的函数值的取值范围;
(3)将拋物线的顶点向下平移个单位长度得到点,点为抛物线的对称轴上一动点,求的最小值.
6.(2020·四川达州·中考真题)如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点B,过A、B两点的抛物线与x轴交于另一点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线下方抛物线上一点,点N为y轴上一点,当的面积最大时,求的最小值.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
第2页(共8页)中小学教育资源及组卷应用平台
【重难点突破】中考数学压轴题解题模型精讲与真题演练
专题02 胡不归模型(几何最值模型)
模型解读 1
常见类型讲解 2
1、模型建立 2
2、问题分析 2
3、问题解决 3
4、模型总结 3
真题演练 3
巩固练习 10
压轴真题强化 17
从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢?倘若有可能,他应该选择怎样的路线呢?这就是风靡千年的“胡不归问题”。
法国著名数学家费马(Fermat,1601-1665),他在与数学家笛卡尔讨论光的折射现象时,偶然发现,如果把胡不归故事中的小伙子看作“光粒子”,然后根据光的折射定律建立数学模型,就可以非常巧妙地解决“胡不归”问题.费马解决“胡不归”问题的过程,告诉我们许多科学领域都是互相渗透、相辅相成的,我们应该多多涉猎各方面知识,这样才能最大限度提升自我,走向成功。
1、模型建立
一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V12、问题分析
,记,即求BC+kAC的最小值.
3、问题解决
构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.
过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.
4、模型总结
在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。
(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是 .
【答案】
【详解】解:∵直线与x轴,y轴分别交于A,B两点,
∴,,
作点B关于x轴的对称点,把点向右平移3个单位得到,
作于点D,交x轴于点F,过点作交x轴于点E,则四边形是平行四边形,
此时,,
∴有最小值,
作轴于点P,
则,,
∵,
∴,
∴,
∴,即,
∴,则,
设直线的解析式为,
则,解得,
∴直线的解析式为,
联立,,解得,
即;
过点D作轴于点G,
直线与x轴的交点为,则,
∴,
∴,
∴,
即的最小值是,
故答案为:.
(2022·广东广州·统考中考真题)如图,在菱形ABCD中,∠BAD = 120°,AB = 6,连接BD .
(1)求BD的长;
(2)点E为线段BD上一动点(不与点B,D重合), 点F在边AD上,且BE=DF,
①当CE丄AB时,求四边形ABEF的面积;
②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.
【答案】(1);
(2)①四边形ABEF的面积为;②最小值为12
【详解】(1)解∶连接AC,设AC与BD的交点为O,如图,
∵四边形ABCD是菱形,
∴AC⊥BD , OA=OC,AB∥CD,AC平分∠DAB,
∵∠BAD = 120°,
∴∠CAB=60°,
∴△ABC是等边三角形,
∴BO=AB sin60°==,
∴BD=2BO=;
(2)解:如图,过点E作AD的垂线,分别交AD和BC于点M,N,
∵△ABC是等边三角形,
∴AC=AB=6,
由(1)得:BD=;
菱形ABCD中,对角线BD平分∠ABC,AB∥CD,BC=AB=6,
∴MN⊥BC,
∵∠BAD=120°,
∴∠ABC=60°,
∴∠EBN=30°;
∴EN=BE
∵,
∴MN=,
设BE=,则EN=,
∴EM=MN-EN=,
∵S菱形ABCD= AD MN=,
∴S△ABD= S菱形ABCD=,
∵BE=DF,
∴DF=,
∴S△DEF=DF EM= =,
记四边形ABEF的面积为s,
∴s= S△ABD - S△DEF =-(),
∵点E在BD上,且不在端点,∴0①当CE⊥AB时,
∵OB⊥AC,
∴点E是△ABC重心,
∴BE=CE=BO=,
此时 =,
∴当CE⊥AB时,四边形ABEF的面积为;
②作CH⊥AD于H,如图,
∵CO⊥BD,CH⊥AD,而点E和F分别在BD和AD上,
∴当点E和F分别到达点O和点H位置时,CF和CE分别达到最小值;
在菱形ABCD中,AB∥CD,AD=CD,
∵∠BAD=120°,
∴∠ADC=60°,
∴△ACD是等边三角形,
∴AH=DH=3,
∴CH=,
∵,
∴当,即BE=时, s达到最小值,
∵BE=DF,
∴DF=3,
此时点E恰好在点O的位置,而点F也恰好在点H位置,
∴当四边形ABEF面积取得最小值时,CE和CF也恰好同时达到最小值,
∴CE+CF的值达到最小,
其最小值为CO+CH==12.
(2020·四川乐山·中考真题)已知抛物线与轴交于,两点,为抛物线的顶点,抛物线的对称轴交轴于点,连结,且,如图所示.(1)求抛物线的解析式;(2)设是抛物线的对称轴上的一个动点.①过点作轴的平行线交线段于点,过点作交抛物线于点,连结、,求的面积的最大值;②连结,求的最小值.
【答案】(1);(2)①;②.
【详解】解:(1)根据题意,可设抛物线的解析式为:,
∵是抛物线的对称轴,
∴,
又∵,
∴,
即,
代入抛物线的解析式,得,解得 ,
∴二次函数的解析式为 或;
(2)①设直线的解析式为 ,
∴ 解得
即直线的解析式为 ,
设E坐标为,则F点坐标为,
∴,
∴的面积
∴,
∴当时,的面积最大,且最大值为;
②如图,连接,根据图形的对称性可知 ,,
∴,
过点作于,则在中,
,
∴,
再过点作于点,则,
∴线段的长就是的最小值,
∵,
又∵,
∴,即,
∴的最小值为.
1、如图,在中,,,.,分别是边,上的动点,且,则的最小值为 .
【答案】
【详解】
如图,作,连接,过B点作的延长线与G点,
,且,
,
,
.
,
∴当B、E、F三点共线时,,此时的值最小,为.
,
.
又,,
∴四边形是矩形,
,,
,
.
故答案为:
2、已知在等腰中,,.,连接,在的右侧做等腰,其中,,连接E,则的最小值为 (用含的代数式表示).
【答案】
【详解】解:如图,过点作交延长线于,过点作于,作的垂直平分线交于,连接,
,
,
,,
,
,
,
,
,
,
,
在中,,
,
,
,
,
当、、三点共线时,为最小值,
当、、三点共线时,,
,
,
与重合,
,
,
,
,
,
是等腰三角形,
,
的垂直平分线交于,
,
,
,
在中,,
即的最小值
故答案为:.
3、如图1,在平面直角坐标系中,直线经过点,与x轴交于点,点C为中点,反比例函数刚好经过点C.将直线绕点A沿顺时针方向旋转得直线,直线与x轴交于点D.
(1)求反比例函数解析式;
(2)如图2,点Q为射线以上一动点,当取最小值时,求的面积;
(3)将沿射线方向进行平移,得到且刚好落在y轴上,已知点M为反比例函数上一点,点N为y轴上一点,若以M,N,B,为顶点的四边形为平行四边形,直接写出所有满足条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
【答案】(1)反比例函数解析式为
(2)的面积为
(3)N点坐标为,或,过程见解析
【详解】(1)解:过点A作于点E,过点C作于点F,
∵,
∴,点C为中点,
∵,,
∴,,
∴,
∴,
∴反比例函数解析式为;
(2)解:∵,,
∴,
∵将直线顺时针旋转得到直线,
∴,
∴,
∴,
∴,
∴,
作直线,
∴,
过点Q作于点H,
∴,
∴当D,Q,H三点共线时,取最小值,
此时Q与A重合,
∴,
∴的面积为;
(3)解:N点坐标为,或,理由如下:
由题可知,,
设,,
当为对角线时,,
解得:,
∴,
当为对角线时,如图,
∵,
解得,
∴,
当为对角线时,如图,
,
解得,
∴,
综上,N点坐标为,或.
一、单选题
1.(2023·安徽合肥·一模)如图,为等边三角形,平分,,点E为上动点,连接,则的最小值为( )
A.1 B. C. D.2
【答案】C
【详解】解:过A作于F,过点P作于E,
∵为等边三角形,平分,
∴,
∴,
∴,即的最小值为的长,
∵,
∴,
∴,
∴的最小值为.
故选:C.
2.(2021·辽宁锦州·二模)如图,菱形的边长为5,对角线的长为,为上一动点,则的最小值为( )
A.4 B.5 C. D.
【答案】A
【详解】连接AC交OB于点M,过M点作MH⊥OC于点H,过点A作AG垂直OC于点G,交OB于点P
∵四边形是菱形
∴AM⊥OB,,,
∵
∴,
∵MH⊥OC,AM⊥OB
∴
∴
∴
∵
∴
∴当A、P、G三点共线且AG⊥OC时有的最小值AG,如下图所示
∵菱形的面积
∴
∴的最小值为4,
故选:A.
二、填空题
3.(2023·湖南湘西·中考真题)如图,是等边三角形的外接圆,其半径为4.过点B作于点E,点P为线段上一动点(点P不与B,E重合),则的最小值为 .
【答案】6
【详解】如图所示,过点P作,连接并延长交于点F,连接
∵是等边三角形,
∴
∵是等边三角形的外接圆,其半径为4
∴,,
∴
∴
∵
∴
∴
∵,
∴
∴
∴的最小值为的长度
∵是等边三角形,,
∴
∴的最小值为6.
故答案为:6.
4.(2023·辽宁锦州·中考真题)如图,在中,,,,按下列步骤作图:①在和上分别截取、,使.②分别以点D和点E为圆心,以大于的长为半径作弧,两弧在内交于点M.③作射线交于点F.若点P是线段上的一个动点,连接,则的最小值是 .
【答案】
【详解】解:过点P作于点Q,过点C作于点H,
由题意知:平分,
∵,,
∴,
∴,
∴,
∴,
∴当C、P、Q三点共线,且与垂直时,最小,最小值为,
∵,,,
∴,
∴,
∵,
∴,
即最小值为.
故答案为:.
三、解答题
5.(2024·四川德阳·中考真题)如图,抛物线与轴交于点和点,与轴交于点.
(1)求抛物线的解析式;
(2)当时,求的函数值的取值范围;
(3)将拋物线的顶点向下平移个单位长度得到点,点为抛物线的对称轴上一动点,求的最小值.
【答案】(1)
(2)
(3)的最小值为:
【详解】(1)解:∵抛物线与轴交于点,
∴,
解得:,
∴抛物线的解析式为:;
(2)解:∵的对称轴为直线,而,
∴函数最小值为:,
当时,,
当时,,
∴函数值的范围为:;
(3)解:∵,
当时,,
∴,
当时,
解得:,,
∴,
∴,
设直线为,
∴,
∴,
∴直线为,
∵拋物线的顶点向下平移个单位长度得到点,而顶点为,
∴,
∴在直线上,
如图,过作于,连接,过作于,
∵,,
∴,,
∵对称轴与轴平行,
∴,
∴,
∴,
由抛物线的对称性可得:,,
∴,
当三点共线时取等号,
∴,
∴,
∴,
即的最小值为:.
6.(2020·四川达州·中考真题)如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点B,过A、B两点的抛物线与x轴交于另一点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线下方抛物线上一点,点N为y轴上一点,当的面积最大时,求的最小值.
【答案】(1);(2)存在点P,点P坐标为(2+,1+)或(2 ,1 )或(2, 3);(3)+
【详解】(1)由题意,令,即
∴A的坐标为(4,0)
令,即
∴B的坐标为(0,-2)
将A、B、C三点坐标代入抛物线,得
解得
∴抛物线解析式为:;
(2)如图1,当点P在直线AB上方时,过点O作OP∥AB,交抛物线于点P,
∵OP∥AB,
∴△ABP和△ABO是等底等高的两个三角形,
∴S△PAB=S△ABO,
∵OP∥AB,
∴直线PO的解析式为y=x,
联立方程组可得,
解得:或,
∴点P(2+,1+)或(2 ,1 );
当点P"在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP"∥AB,交抛物线于点P",连接AP",BP",
∴AB∥EP"∥OP,OB=BE,
∴S△AP"B=S△ABO,
∵EP"∥AB,且过点E(0, 4),
∴直线EP"解析式为y=x 4,
联立方程组可得,
解得,
∴点P"(2, 3),
综上所述:点P坐标为(2+,1+)或(2 ,1 )或(2, 3);
(3)如图2,过点M作MF⊥AC,交AB于F,
设点M(m,),则点F(m,m 2),
∴MF=m 2 ()= (m 2)2+2,
∴△MAB的面积=×4×[ (m 2)2+2]= (m 2)2+4,
∴当m=2时,△MAB的面积有最大值,
∴点M(2, 3),
如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,
∵∠KOB=30°,KN⊥OK,
∴KN=ON,
∴MN+ON=MN+KN,
∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,
∵∠KOB=30°,
∴直线OK解析式为y=x,
当x=2时,点Q(2,2),
∴QM=2+3,
∵OB∥QM,
∴∠PQM=∠PON=30°,
∴PM=QM=+,
∴MN+ON的最小值为+.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
第2页(共27页)