期中检测卷(含答案)---2024-2025学年六年级数学下册真题重组检测卷(冀教版)

文档属性

名称 期中检测卷(含答案)---2024-2025学年六年级数学下册真题重组检测卷(冀教版)
格式 docx
文件大小 191.4KB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2025-03-27 21:10:02

图片预览

文档简介

保密★启用前
2024-2025学年六年级下册期中真题重组检测卷(冀教版)
数学
考试时间:90分钟 分值:100分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第Ⅰ卷 客观题
阅卷人 一、单选题(本大题10个小题,每小题1分,共10分)
得分
1.(2023六下·十堰期中)在-5,-0.5,0,-0.01这四个数中,最大的负数是(  )。
A.-5 B.-0.5 C.0 D.-0.01
2.(2021六下·阳东期中)周长相等的正方形、长方形和圆形,(  )的面积最大。
A.正方形 B.长方形 C.圆 D.无法确定
3.(2024六下·隆回期中)若图上距离6厘米,表示实际距离240千米,则这幅图的比例尺是(  )
A.1:400 B.1:4000 C.1:400000 D.1:4000000
4.(2024六下·蓬江期中)“宫、商、角、徵、羽”是我国古代音乐的基本音阶。基本音阶“商”的发音管比基本音阶“徵”的发音管短,则“徵”和“商”的发音管长度比是(  )。
A.3:2 B.2:3 C.4:3 D.3:4
5.(2023六下·顺德期中)在100克的糖水中,糖与糖水的比是2:10,如果再加入10克糖,要使得糖水浓度不变,应加入(  )克水。
A.10克 B.20克 C.40克 D.50克
6.(2024六下·玉田期中)铺地的面积一定,用砖的总块数和每块砖的(  )成反比例。
A.边长 B.周长 C.面积
7.(2024六下·黄石期中) 一种商品,先提价10%后,再打九折出售(  )
A.比原价高 B.比原价低 C.与原价相同 D.无法确定
8.(2024六下·瑞金期中)下列选项中,能与:组成比例的是(  )
A.: B.3:2 C.0.2:0.3 D.:0.25
9.(2024六下·鹰潭期中)下面(  )杯中的饮料最多。
A. B. C.
10.(2024六下·南昌期中)某酒店按营业税率5%缴纳营业税6650元,该商店的营业收入为(  )。
A.7000元 B.133000元 C.6300元 D.13300元
阅卷人 二、判断题(本大题5个小题,每小题1分,共5分)
得分
11.(2024六下·陆川期中)如果时间一定时,路程与速度成反比例关系。( )
12.(2024六下·玉田期中)三角形的面积一定,底边和这个底边上的高成反比例。(  )
13.(2022六下·青岛期中)圆的面积和它的半径成正比例。(  )
14.(2024六下·玉田期中)=B,那么A和B成反比例。(  )
15.(2024六下·陆川期中)利率是本金与利息的比值。( )
阅卷人 三、填空题(本大题10个小题,每小题2分,共20分)
得分
16.(2023六下·宿迁期中)在比例尺是1:5000000的地图上,量得上海到杭州的距离是3.4厘米,上海到杭州的实际距离是   千米。
17.(2023六下·金昌期中)如果,那么M:N=   ,M和N成   比例关系。
18.(2024六下·蓬江期中)一个比例,其中两个内项的积是最小的质数,已知一个外项是,则另一个外项是   。
19.(2023六下·恩施期中)18的因数有   ,利用这些因数组成一个比例是   。
20.(2022六下·浚县期中)植树节,甲乙同学合作栽一批树苗,需要6小时可以完成,甲单独栽需要10小时完成,乙同学单独栽需要   小时。
21.(2024六下·柳州期中)汉字是我国的一种文字,也是最古老的文字之一,据了解87019个,横线上的数读作   ;据不完全统计,除了常用汉字,在历史上出现过的汉字总数一共有九万一千二百五十一个,写作   ,省略万后面的尾数约是   。
22.(2024六下·黄石期中)如果4A=3B(A、B都不为0),那么A:B=   。
23.(2024六下·瑞金期中) 一张精密仪器图纸,用5cm长表示实际长5mm,则这幅图的比例尺是   。
24.(2024六下·玉田期中)在﹣8,0.2,﹣11,+,0,96中,整数有   个。
25.(2024六下·鹰潭期中)一辆汽车从学校向东走21千米记作+21千米,那么汽车从学校向西行20千米可以记作   千米;+10千米表示   。
阅卷人 四、计算题(23分)
得分
26.(2024六下·七星关期中)直接写出得数。
0.125×80= 1:0.25=
1÷10%= 40%×2.5=
27.(2024六下·陆川期中)解方程或比例。
①3x-3.7=21.2 %x+40×0.12=6
阅卷人 五、解决问题(本大题6个小题,共42分)
得分
28.(2024六下·玉田期中)一个玻璃杯(如图),从里面量底面半径是10厘米,高是25厘米。这个杯中的水有多少升?
29.(2024六下·鹰潭期中)一个薯片筒如下图,底面半径是2cm,高10cm,
(1)这个薯片筒的容积是多少
(2)在这个薯片筒的侧面贴上商标纸,需要多大面积的纸
30.(2024六下·南昌期中)在一幅比例尺1:2000000的地图上,量得甲、乙两地之间的距离是3.6厘米,如果一辆摩托三轮车以每小时30千米的速度在上午8点从甲地出发,问什么时间能够到达乙地
31.(2024六下·南海期中)我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直 柱体。我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体 积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为 2cm、3cm,高为 5cm,请你计算出它的体积。
32.(2024六下·齐河期中)运动会开幕式上,学校举行了足球操表演。每排站30人,正好站20排,如果每排站40人,那么可以站几排?(用比例解)
33.(2024六下·岷县期中)一个从里面量底面直径是20cm的装有水的圆柱形玻璃杯,杯中水面距杯口3cm。若将一个高是12cm的圆锥形铅锤浸没在水中,水会溢出20mL。铅锤的底面积是多少平方厘米?
答案解析部分
1.D
解:最大的负数是-0.01。
故答案为:D。
几个负数比较大小,负号后面的数越大,这个负数就越小,负号后面的数越小,这个负数就越大。
2.C
周长相等的正方形、长方形和圆,圆的面积最大.
故答案为:C.
此题主要考查了图形的周长和面积的比较,周长相等的正方形、长方形和圆的面积:圆的面积>正方形的面积>长方形的面积,据此解答.
3.D
解:240千米=24000000厘米
6:24000000
=(6÷6):(24000000÷6)
=1:4000000
故答案为:D。
先将实际距离的单位转化成厘米:1千米=100000厘米,大单位转化成小单位乘进率,再根据图上距离:实际距离=比例尺,并化简即可求出这幅图的比例尺。
4.A
3:(3-1)=3:2
故答案为:A。
找准单位“1”在“比”字后面。基本音阶“商”的发音管比基本音阶“徵”的发音管短,根据这个条件,把“徵”的发音管当做单位“1”,平均分成3份,“商”的发音管少一份,就是2份。所以“徵”和“商”的发音管长度比是3份比2份,就是3:2。
5.C
解:设应加入x克水。
2:10=10:(10+x)
2(10+x)=10×10
2x=80
x=40。
故答案为:C。
要使得糖水浓度不变,则加糖与加水后的浓度等于之前的浓度,以此列比例,解比例。
6.C
解:用砖的总块数×每块砖的面积=铺地的面积(一定),
用砖的总块数和每块砖的面积成反比例。
故答案为:C。
反比例的判断方法:相关联,能变化,积一定。
7.B
解:商品的原价看做单位1,
提价后的价格:1×(1+10%)=1.1,
再打九折后的价格:1.1×0.9=0.99,
1>0.99
现价比原价低 。
故答案为:B。
原价×(1+10%)=提价后的价格,提价后的价格×九折=再打九折后的价格,原价>再打九折后的价格,说明现价比原价低 。
8.C
解::=÷=
A::=÷=,不能组成比例;
B:3:2=3÷2=,不能组成比例;
C:0.2:0.3=0.2÷0.3=,能组成比例;
D::0.25=÷0.25=,不能组成比例。
故答案为:C。
比例:表示两个比相等的式子叫做比例。分别计算出各个选项的比值,找到与:的比值相等的比即可。
9.B
解:的底面直径和高都大于,的饮料比的饮料多;的饮料比的饮料多,所以中饮料最多。
故答案为:B。
圆柱的体积=底面积×高,所以圆柱的容积大小与圆柱的底面直径和高有关,根据每个杯子中的底面直径和饮料的高度判断饮料的多少即可。
10.B
解:6650÷5%=133000(元)
故答案为:B。
在税率问题中,营业收入与应缴纳营业税的关系为:营业收入=应缴纳营业税÷营业税率。
11.错误
解:路程÷速度=时间,时间一定时,路程与速度成正比例关系,原题干说法错误。
故答案为:错误。
判断两个相关联的量成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例。
12.正确
解:底边×这个底边上的高=三角形的面积×2(一定),
底边和这个底边上的高成反比例。原题说法正确。
故答案为:正确。
反比例的判断方法:相关联,能变化,积一定。
13.错误
解:圆的面积和它的半径不成比例,所以原题说法错误。
故答案为:错误。
两个量相除,商一定则这两个量成正比例,本题中圆的面积=π×圆的半径的平方,所以圆的面积和圆的半径的平方成正比例,据此进行解答。
14.错误
解:由=B可得A÷B=8,那么A和B成正比例。原题说法错误。
故答案为:错误。
正比例的判断方法:相关联,能变化,商一定;反比例的判断方法:相关联,能变化,积一定。
15.错误
解:利率表示一定时间内利息与本金的比率,通常用百分数表示,而不是比值,原题干说法错误。
故答案为:错误。
利率=利息÷本金,是一定时间内利息与本金的比率。
16.170
解:3.4÷=17000000(厘米),17000000厘米=170千米。
故答案为:170。
用图上距离除以比例尺即可求出实际距离,把实际距离换算成千米即可,1千米=100000厘米。
17.1:3;正
解:=
21M=7N
M:N=7:21
M:N=1:3
M:N=
M和N成正比例关系。
故答案为:1:3;正。
在=中,根据比例的外项之积等于比例的内项之积。把M看做比例的外项,N看做比例的內项,据此改写成比例的形式。再根据比例的基本性质,比的前项和后项同时乘以或除以同一个数,化为最简整数比;正比例的判断方法:相关联,能变化,商一定。
18.4
解:2÷=4。
故答案为:4。
最小的质数是2, 比例的基本性质:在比例里,两个内项积等于两个外项积,另一个外项=两个内项积÷其中一个外项。
19.1、18、2、9、3、6;18:3=6:1
解:18的因数有:1、18、2、9、3、6;
利用这些因数组成一个比例是18:3=6:1。
故答案为:1、18、2、9、3、6;18:3=6:1。
求一个数因数的方法:哪两个自然数(0除外)相乘的积等于这个数,这些数都是这个数的因数;比例的基本性质:在比例里,两个内项积等于两个外项积,依据比例的基本性质写出比例。
20.15
解:-=-=
1÷=15(小时)
故答案为:15。
甲乙的工作效率之和-甲的工作效率=乙的工作效率,工作总量÷乙的工作效率=乙的工作时间。
21.八万七千零一十九;91251;9万
22.3:4
解:4A看做比例的外项,3B看做比例的内项,根据比例的基本性质,把反比例化为正比例,即由4A=3B可化为A:B=3:4。
故答案为:3:4。
比例的基本性质:比例的外项之积等于比例的内项之积。
23.10:1
解:图上距离是5cm,转换为毫米是5cm ×10 = 50mm,
5cm:5mm
=50mm:5mm
=10:1
故答案为:10:1。
比例尺=图上距离:实际距离;先进行单位换算,再求出比例尺。
24.4
解:﹣8,﹣11,0,96都是整数,有4个。
故答案为:4。
整数包括正整数、0、负整数。
25.-20;向东行10千米
解:一辆汽车从学校向东走21千米记作+21千米,那么汽车从学校向西行20千米可以记作-20千米;+10千米表示向东行10千米。
故答案为:-20;向东行10千米。
以学校为起点,向东走记作正,向西走记作负。根据正负数的意义填空即可。
26.
0.125×80=10 1 0.09 1:0.25=4
1÷10%=10 40%×2.5=1 2
小数乘法,先按整数乘法法则进行计算,再看因数中一共有几位小数,就在积的末尾往左数出几位点上小数点;
一个数的平方等于这个数乘这个数;
比值=比的前项÷比的后项;
含有百分数的计算,要先将百分数化成分数或小数,再进行计算;
百分数化成小数:去掉“%”,再讲数的小数点向左移动两位;
除数是分数的除法,除以一个数等于乘这个数的倒数,再按照分数乘法方法进行计算。
27.
①3x-3.7=21.2
解: 3x=24.9
x=24.9÷3
x=8.3
②x:10=:
解:x=10×
x=
x=÷
x= ③30%x+40×0.12=6
解:30%x+4.8=6
30%x=1.2
x=1.2÷30%
x=4
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;
①先应用等式的性质1,等式两边同时加上3.7,然后应用等式的性质2,等式两边同时除以3;
③先计算40×0.12=4.8,然后应用等式的性质1,等式两边同时减去4.8,最后应用等式的性质2,等式两边同时除以30%;
②比例的基本性质:在比例里,两个内项积等于两个外项积,应用比例的基本性质解比例。
28.解:3.14×10×10×(25﹣10)
=314×15
=4710(立方厘米)
4710立方厘米=4710毫升=4.71(升)
答:这个杯中的水有4.71升。
π×底面半径的平方×水的高度=水的体积;1立方厘米=1毫升,1升=1000毫升,据此解答。
29.(1)解:3.14×22×10
=3.14×40
=125.6(cm3)
答:这薯片筒的容积是125.6立方厘米。
(2)解:3.14×2×2×10
=3.14×40
=125.6(平方厘米)
答:需要125.6平方厘米的纸。
(1)圆柱的体积=底面积×高,根据公式计算薯片筒的容积;
(2)圆柱的侧面积=底面周长×高,根据公式计算需要商标纸的面积即可。
30.解:
72÷30=2.4时
2.4时=2时24分
8时+2时24分=10时24分
答:上午10时24分能够到达乙地。
图上距离÷比例尺=实际距离,路程÷速度=时间,100000cm=1km。本题先根据比例尺求出甲、乙两地的实际距离,然后计算出需要的时间,最后即可求出到达乙地的时间。
31.解:我们学过的圆柱、长方体、正方体的体积都可以根据底面积×高进行计算,因为,三棱柱也是直柱体,所以猜测三棱柱的体积也可以根据底面积×高进行计算。
2×3÷2×5
=3×5
=15(立方厘米)
答:三棱柱的体积是15立方厘米。
我们学过的圆柱、长方体、正方体的体积都可以根据底面积×高进行计算,因为,三棱柱也是直柱体,所以猜测三棱柱的体积也可以根据底面积×高进行计算,据此解答。
32.解:设可以站x排。
40x=30×20
40x÷40=600÷40
x=15
答:可以站成15排。
总人数不变,设可以站x排,根据每排人数乘排数=总人数,列反比例方程解答。
33.解:[3.14×(20÷2)2×3+20]÷(×12)
=[942+20]÷4
=962÷4
=240.5(平方厘米);
答:铅锤的底面积是240.5平方厘米。
铅锤的体积等于上升的3厘米的水的体积+溢出的水的体积,根据圆柱的体积=,计算出上升的水的体积,再加上溢出的水的体积即是铅锤的体积,再利用圆锥的体积=,求得铅锤的底面积,据此解答。
同课章节目录