§2 古典概型
2.1 古典概型的概率计算公式
学习任务 核心素养
1.结合具体实例,概括出古典概型的两个特征,理解古典概型.(重点) 2.能利用古典概型的概率计算公式计算古典概型中简单随机事件的概率.(重难点) 1.通过概括古典概型特征的过程,培养数学抽象素养. 2.借助古典概型的概率计算,培养数学运算素养.
1.古典概型具有哪些特点?
2.古典概型的概率计算公式是什么?
1.随机事件的概率
对于一个随机事件A,我们通常用一个数P(A)(0≤P(A)≤1)来表示该事件发生的可能性的大小,这个数就称为随机事件A的概率.概率度量了随机事件发生的可能性的大小,是对随机事件统计规律性的数量刻画.
2.古典概型
(1)古典概型的定义:一般地,若试验E具有如下特征:
①有限性:试验E的样本空间Ω的样本点总数有限,即样本空间Ω为有限样本空间;
②等可能性:每次试验中,样本空间Ω的各个样本点出现的可能性相等.
则称这样的试验模型为古典概率模型,简称古典概型.
(2)古典概型的概率计算公式:如果样本空间Ω包含的样本点总数为n,随机事件A包含的样本点个数为m,那么事件A发生的概率为
P(A)==.
(1)“在区间[0,10]上任取一个数,这个数恰为5的概率是多少?”这个概率模型属于古典概型吗?
(2)若一次试验的结果所包含的样本点的个数为有限个,则该试验是古典概型吗?
[提示] (1)不属于古典概型.因为在区间[0,10]上任取一个数,其试验结果有无限个,故其样本点有无限个,所以不是古典概型.
(2)不一定.还必须满足每个样本点出现的可能性相等,才属于古典概型.
1.下列试验是古典概型的是( )
A.口袋中有2个白球和3个黑球,从中任取一球,样本点为{取出白球}和{取出黑球}
B.在区间[-1,5]上任取一个实数x,使x2-3x+2>0
C.抛一枚质地均匀的硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
C [根据古典概型的两个特征进行判断.A中两个样本点不是等可能的,B中样本点的个数是无限的,D中“中靶”与“不中靶”不是等可能的,C符合古典概型的两个特征.]
2.从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为( )
A. B.
C. D.1
C [从甲、乙、丙三人中任选两人有:(甲,乙),(甲,丙),(乙,丙),共3种情况,其中甲被选中的情况有2种,故甲被选中的概率为P=.]
类型1 古典概型的判断
【例1】 (1)向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)如图所示,射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环,命中9环,…,命中1环和命中0环(即不命中).你认为这是古典概型吗?为什么?
[解] (1)试验的所有可能结果是圆面内的所有点.试验的所有可能结果是无限的.因此,尽管每一个试验结果出现的可能性相同,但这个试验不是古典概型.
(2)试验的所有可能结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,因此这个试验不是古典概型.
判断随机试验是否为古典概型,关键是抓住古典概型的两个特征——有限性和等可能性,二者缺一不可.
[跟进训练]
1.下列试验是古典概型的为________.(填序号)
①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;
②同时掷两颗质地均匀的骰子,点数和为6的概率;
③近三天中有一天降雨的概率;
④10人站成一排,其中甲、乙相邻的概率.
①②④ [①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.]
类型2 利用古典概型公式求概率
【例2】 现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的2道题都是甲类题的概率;
(2)所取的2道题不是同一类题的概率.
[解] 将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,这个试验的样本空间Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)},共15个样本点,且每个样本点出现的可能性是等可能的.
(1)用A表示“所取的2道题都是甲类题”这一事件,则A={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共有6个样本点,所以P(A)==.
(2)用B表示“所取的2道题不是同一类题”这一事件,则B={(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)},共包含8个样本点,所以P(B)=.
求解古典概型概率“四步”法
[跟进训练]
2.掷一颗质地均匀的骰子,观察掷出的点数,求掷得奇数点的概率.
[解] 试验的样本空间Ω={1,2,3,4,5,6}.样本点总数n=6,令“掷得奇数点”为事件A,则A={1,3,5},其包含的样本点个数m=3,所以P(A)==.
类型3 较复杂的古典概型的概率计算
【例3】 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
[解] 用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,所以样本点总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的样本点个数共5个,
即A={(1,1),(1,2),(1,3),(2,1),(3,1)}.
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.
则事件B包含的样本点共6个,即B={(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)}.所以P(B)==.
事件C包含的样本点个数共5个,即C={(1,4),(2,2),(2,3),(3,2),(4,1)}.
所以P(C)=.因为>,
所以小亮获得水杯的概率大于获得饮料的概率.
[母题探究]
1.在本例中求小亮获得玩具或水杯的概率.
[解] 用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,
所以样本点总数n=16.
记“小亮获得玩具或水杯”为事件E,
则事件E包含的样本点个数共11个,
即E={(1,1),(1,2),(1,3),(2,1),(3,1),(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)}.
所以P(E)=.
2.在本例中奖励规则改为:①若3≤x+y≤5,则奖励玩具一个;②其余情况没有奖.求小亮获得玩具的概率.
[解] 用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,
所以样本点总数n=16.
记“3≤x+y≤5”为事件D,则事件D包含的样本点个数共9个,即D={(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,2),(2,3),(3,2)}.
所以P(D)=.
解古典概型问题时,要牢牢抓住它的两个特征和计算公式.但是这类问题的解法多样,技巧性强,在解决此类题时需要注意以下两个问题:
(1)试验必须具有古典概型的两大特征——有限性和等可能性.
(2)计算样本点的数目时,要做到不重不漏,常借助坐标系、表格及树状图等列出所有样本点.
[跟进训练]
3.(2021·全国甲卷)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A.0.3 B.0.5
C.0.6 D.0.8
C [把3个1和2个0排成一行,共有10种排法,分别是00111,10011,11001,11100,01011,01101,01110,10101,10110,11010,其中2个0不相邻的排法有6种,分别是01011,01101,01110,10101,10110,11010,所以所求概率P==0.6.故选C.]
1.思考辨析(正确的画“√”,错误的画“×”)
(1)任何一个事件都是一个样本点. ( )
(2)古典概型中每一个样本点出现的可能性相等. ( )
(3)古典概型中的任何两个样本点都是互斥的. ( )
[提示] (1)错误.一个事件可能是一个样本点,也可能包含若干个样本点.
(2)正确.
(3)正确.古典概型中任何两个样本点都不能同时发生,所以是互斥的.
[答案] (1)× (2)√ (3)√
2.(2023·全国甲卷)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )
A. B.
C. D.
D [记高一年级2名学生分别为a1,a2,高二年级2名学生分别为b1,b2,则从这4名学生中随机选2名组织校文艺汇演的样本点有(a1,a2),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(b1,b2),共6个,其中这2名学生来自不同年级的样本点有(a1,b1),(a1,b2),(a2,b1),(a2,b2),共4个,所以这2名学生来自不同年级的概率P==,故选D.]
3.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )
A. B.
C. D.
C [样本点有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6个,甲站在中间的事件包括乙甲丙、丙甲乙,共2个,所以甲站在中间的概率P==.]
4.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.
[所有的样本点有(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝),共9种,其中颜色相同的有(红,红),(白,白),(蓝,蓝),共3种,故所求的概率为P==.]
5.甲、乙、丙、丁、戊5人站成一排合影,则甲站在乙的左边的概率为________.
[不考虑丙、丁、戊具体站在什么位置,只考虑甲、乙的相对位置,只有甲站在乙的左边和甲站在乙的右边,共2个等可能发生的结果,因此甲站在乙的左边的概率为.]
课时分层作业(四十) 古典概型的概率计算公式
一、选择题
1.(2022·新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B.
C. D.
D [从2至8的7个整数中随机取2 个不同的数,共有21种不同的取法,
若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P==.
故选D.]
2.下列是古典概型的是( )
A.任意抛掷两枚骰子,所得点数之和作为样本点
B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为样本点
C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率
D.抛掷一枚均匀硬币,首次出现正面为止
C [A项中由于点数的和出现的可能性不相等,故A项不是;B项中的样本点是无限的,故B项不是;C项满足古典概型的有限性和等可能性,故C项是;D项中样本点既不是有限个,也不具有等可能性,故D项不是.]
3.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( )
A. B.
C. D.
D [设所取的数中b>a为事件A,如果把选出的数a,b写成一数对(a,b)的形式,则试验的样本空间Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)},共15个,事件A包含的样本点有(1,2),(1,3),(2,3),共3个,因此所求的概率P(A)==.]
4.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为( )
A. B.
C. D.
C [从五个人中选取三人,则试验的样本空间Ω={(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊)},而甲、乙都当选的结果有3种,故所求的概率为.]
5.同时抛掷三枚均匀的硬币,出现一枚正面、两枚反面的概率等于( )
A. B.
C. D.
C [试验的样本空间Ω={(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,反,正),(反,正,反),(反,反,反)},共8种,出现一枚正面、两枚反面的样本点有3种,故概率为P=.]
二、填空题
6.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率是________.
[设3件正品为A,B,C,1件次品为D,从中不放回地任取2件,试验的样本空间Ω={(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)},共6个.其中恰有1件是次品的样本点有:(A,D),(B,D),(C,D),共3个,故P==.]
7.在国庆阅兵中,某兵种A,B,C三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B先于A,C通过的概率为________.
[用(A,B,C)表示A,B,C通过主席台的次序,则所有可能的次序有(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A),共6种,其中B先于A,C通过的有(B,C,A)和(B,A,C),共2种,故所求概率P==.]
8.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.
[从5个数中任意取出两个不同的数,样本点的总数为10,若取出的两数之和等于5,则有(1,4),(2,3),共有2个样本点,所以取出的两数之和等于5的概率为=.]
三、解答题
9.某种饮料每箱装6听,其中一箱有2听不合格,质检人员依次不放回地从该箱中随机抽出2听,求检测出不合格产品的概率.
[解] 只要检测的2听中有1听不合格,就表示查出了不合格产品.分为两种情况:1听不合格和2听都不合格.设合格饮料为1,2,3,4,不合格饮料为5,6,从6听中选2听的样本点有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.有1听不合格的有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种;有2听不合格的有(5,6),共1种,所以检测出不合格产品的概率为=.
10.某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层随机抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.
(1)求应从初级教师、中级教师、高级老师中分别抽取的人数;
(2)若从分层随机抽样抽取的6名教师中随机抽取2名教师做进一步数据分析,求抽取的2名教师均为初级教师的概率.
[解] (1)由分层随机抽样知识得应从初级教师、中级教师、高级教师中抽取的人数分别为3,2,1.
(2)在分层随机抽样抽取的6名教师中,3名初级教师分别记为A1,A2,A3,2名中级教师分别记为A4,A5,高级教师记为A6,则从中抽取2名教师的样本空间Ω={(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6)},即样本点的总数为15.抽取的2名教师均为初级教师(记为事件B)的样本点为(A1,A2),(A1,A3),(A2,A3),共3种.
所以P(B)==.
11.有五根细木棒,长度分别为1,3,5,7,9,从中任取三根,能搭成三角形的概率是( )
A. B.
C. D.
D [设取出的三根木棒能搭成三角形为事件A,试验的样本空间Ω={(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9),(5,7,9)},样本空间的总数为10,由于三角形两边之和大于第三边,构成三角形的样本点只有(3,5,7),(3,7,9),(5,7,9)三种情况,故所求概率为P(A)=.]
12.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B.
C. D.
D [设两位男同学分别为a,b,两位女同学分别为c,d,四人随机站成一列,试验的样本空间Ω={abcd,abdc,acbd,acdb,adbc,adcb,bacd,badc,bcad,bcda,bdac,bdca,cabd,cadb,cbad,cbda,cdab,cdba,dabc,dacb,dbac,dbca,dcab,dcba},共24个,其中表示两位女同学相邻的样本点有:abcd,abdc,acdb,dcab,dcba,bacd,badc,bcda,bdca,cdab,cdba,adcb,共12个,故所求的概率为=.]
13.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.
[用A,B,C表示3名男同学,用a,b,c表示3名女同学,则从6名同学中选出2人的样本空间Ω={AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc},其中事件“2名都是女同学”包含样本点的个数为3,故所求的概率为=.]
14.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率为________.
[设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则试验的样本空间Ω={(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)},则样本空间的总数为15个.两球颜色为一白一黑的样本点有(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个.所以所求概率为=.]
15.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率.
[解] (1)由题意可知:=,解得n=2.
(2)由(1)知,标号为2的小球有2个,设为21,22,不放回地随机抽取2个小球的样本空间Ω={(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21)},共12个,事件A包含的样本点为:(0,21),(0,22),(21,0),(22,0),共4个.∴P(A)==.(共27张PPT)
2.1 古典概型的概率计算公式
第七章 概率
§2 古典概型
学习任务 核心素养
1.结合具体实例,概括出古典概型的两个特征,理解古典概型.(重点)
2.能利用古典概型的概率计算公式计算古典概型中简单随机事件的概率.(重难点) 1.通过概括古典概型特征的过程,培养数学抽象素养.
2.借助古典概型的概率计算,培养数学运算素养.
必备知识·情境导学探新知
1.古典概型具有哪些特点?
2.古典概型的概率计算公式是什么?
1.随机事件的概率
对于一个随机事件A,我们通常用一个数P(A)(______________)来表示该事件发生的______的大小,这个数就称为随机事件A的概率.概率度量了随机事件发生的可能性的大小,是对随机事件统计规律性的____刻画.
0≤P(A)≤1
可能性
数量
有限
有限样本空间
相等
思考(1)“在区间[0,10]上任取一个数,这个数恰为5的概率是多少?”这个概率模型属于古典概型吗?
(2)若一次试验的结果所包含的样本点的个数为有限个,则该试验是古典概型吗?
[提示] (1)不属于古典概型.因为在区间[0,10]上任取一个数,其试验结果有无限个,故其样本点有无限个,所以不是古典概型.
(2)不一定.还必须满足每个样本点出现的可能性相等,才属于古典概型.
体验1.下列试验是古典概型的是( )
A.口袋中有2个白球和3个黑球,从中任取一球,样本点为{取出白球}和{取出黑球}
B.在区间[-1,5]上任取一个实数x,使x2-3x+2>0
C.抛一枚质地均匀的硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
C [根据古典概型的两个特征进行判断.A中两个样本点不是等可能的,B中样本点的个数是无限的,D中“中靶”与“不中靶”不是等可能的,C符合古典概型的两个特征.]
√
√
关键能力·合作探究释疑难
类型1 古典概型的判断
【例1】 (1)向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)如图所示,射击运动员向一靶心进行射击,这一
试验的结果只有有限个:命中10环,命中9环,…,
命中1环和命中0环(即不命中).你认为这是古典概型
吗?为什么?
[解] (1)试验的所有可能结果是圆面内的所有点.试验的所有可能结果是无限的.因此,尽管每一个试验结果出现的可能性相同,但这个试验不是古典概型.
(2)试验的所有可能结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,因此这个试验不是古典概型.
反思领悟 判断随机试验是否为古典概型,关键是抓住古典概型的两个特征——有限性和等可能性,二者缺一不可.
[跟进训练]
1.下列试验是古典概型的为________.(填序号)
①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;
②同时掷两颗质地均匀的骰子,点数和为6的概率;
③近三天中有一天降雨的概率;
④10人站成一排,其中甲、乙相邻的概率.
①②④ [①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.]
①②④
类型2 利用古典概型公式求概率
【例2】 现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的2道题都是甲类题的概率;
(2)所取的2道题不是同一类题的概率.
[解] 将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,这个试验的样本空间Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)},共15个样本点,且每个样本点出现的可能性是等可能的.
反思领悟 求解古典概型概率“四步”法
[跟进训练]
2.掷一颗质地均匀的骰子,观察掷出的点数,求掷得奇数点的概率.
类型3 较复杂的古典概型的概率计算
【例3】 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分
别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯
一个;③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
[母题探究]
1.在本例中求小亮获得玩具或水杯的概率.
2.在本例中奖励规则改为:①若3≤x+y≤5,则奖励玩具一个;②其余情况没有奖.求小亮获得玩具的概率.
反思领悟 解古典概型问题时,要牢牢抓住它的两个特征和计算公式.但是这类问题的解法多样,技巧性强,在解决此类题时需要注意以下两个问题:
(1)试验必须具有古典概型的两大特征——有限性和等可能性.
(2)计算样本点的数目时,要做到不重不漏,常借助坐标系、表格及树状图等列出所有样本点.
[跟进训练]
3.(2021·全国甲卷)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A.0.3 B.0.5
C.0.6 D.0.8
√
学习效果·课堂评估夯基础
1.思考辨析(正确的画“√”,错误的画“×”)
(1)任何一个事件都是一个样本点. ( )
(2)古典概型中每一个样本点出现的可能性相等. ( )
(3)古典概型中的任何两个样本点都是互斥的. ( )
2
4
3
题号
1
5
[提示] (1)错误.一个事件可能是一个样本点,也可能包含若干个样本点.
(2)正确.
(3)正确.古典概型中任何两个样本点都不能同时发生,所以是互斥的.
×
√
√
√
2
4
3
题号
1
5
√
2
4
3
题号
1
5
4.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.
2
4
3
题号
1
5
2
4
3
题号
1
5.甲、乙、丙、丁、戊5人站成一排合影,则甲站在乙的左边的概率为________.
5