第3课时 3的倍数
一、填空。
1.地球上已知的“死火山”约有2000座,已发现的“活火山”有523座,其中陆地上有455座,海底有68座;我国境内火山大多是死火山,一共660座火山,只有5个活火山(1个在新疆,4个在台湾),6个休眠火山(分别位于五大连池、长白山和腾冲),其中休眠火山就是主要的丰富有景观魅力的火山地貌。这段话中的偶数有( )个,奇数有( )个,( )既是2和3的倍数又是5的倍数;523至少加上( )既是3的倍数又是5的倍数。
【答案】 5 4 660 2
【分析】整数中,是2的倍数的数叫做偶数(0也是偶数),其他不是2的倍数的数叫做奇数;一个数,如果是2和3的倍数又是5的倍数,那么这个数的个位上是0,各数位上的数字之和是3的倍数;一个数,个位是5,各数位上的数字之和是3的倍数,那这个数就是3的倍数又是5的倍数。据此解答。
【详解】2000、68、660、4、6这5个数是偶数。
523、455、5、1、这4个数是奇数。
6+6+0=12
12÷3=4
660既是2和3的倍数又是5的倍数。
523+2=525
5+2+5=12
12÷3=4
这段话中的偶数有(5 )个,奇数有(4)个,(660)既是2和3的倍数又是5的倍数;523至少加上(2)既是3的倍数又是5的倍数。
【点睛】掌握偶数、奇数的概念,明确2、3、5的倍数特征是解答本题的关键。
2.在□里填一个数字,使每个数都是3的倍数,把可能的结果写在括号里。(首位不为0)
□3( ) 1□7( ) 28□( ) 3□9( )
□47( ) 2□( ) 334□( ) 67□1( )
【答案】3,6,9 1,4,7 2,5,8 0,3,6,9 1,4,7 1,4,7 2,5,8
1,4,7
【分析】3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。据此填空。
【详解】□3,□可以填3,6,9;
1□7,□可以填1,4,7;
28□,□可以填2,5,8;
3□9,□可以填0,3,6,9;
□47,□可以填1,4,7;
2□,□可以填1,4,7;
334□,□可以填2,5,8;
67□1,□可以填1,4,7。
二、选一选。
1.面包店制作了125个面包,选择( )包装盒正好能把它们装完。
A. B. C. D.
【答案】D
【分析】个位上是0、2、4、6、8的数,是2的倍数;个位上是0或5的数是5的倍数;3的倍数各个数位上数的和也是3的倍数。4的倍数一定也是2的倍数。据此解题。
【详解】A.125的个位是5,所以125不是2的倍数;
B.1+2+5=8,8不是3的倍数,所以125不是3的倍数;
C.125不是2的倍数,那么一定不是4的倍数;
D.125的个位是5,那么125是5的倍数;
所以,面包店制作了125个面包,选择包装盒正好能把它们装完。
故答案为:D
2.三个连续自然数的和一定是( )。
A.3的倍数 B.偶数 C.奇数 D.无法确定
【答案】A
【分析】3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
整数中,是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
【详解】A.三个连续自然数的和=中间自然数×3,因此三个连续自然数的和一定是3的倍数。
B.三个连续自然数的和不一定是偶数,如2+3+4=9;
C.三个连续自然数的和不一定是奇数,如1+2+3=6。
三个连续自然数的和一定是3的倍数。
故答案为:A
3.由1、4、7三个数字组成的三位数( )。
A.一定是3的倍数 B.一定不是3的倍数
C.一定是奇数 D.有的是3的倍数,有的不是3的倍数
【答案】A
【分析】根据3的倍数特征:各个数位上的数字之和是3的倍数,这个数字就是3的倍数;据此解答即可。
【详解】1+4+7=12
因为12是3的倍数,所以用1、4、7组成的三位数一定是3的倍数。
故答案为:A
4.4个六位数分别是:、、、,并且是比10小的非零自然数,是0,那么,这四个数中一定能同时被2、3、5整除的数是( )。
A. B. C. D.
【答案】B
【分析】2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。
3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
5的倍数的特征:个位是0或5的数是5的倍数。
【详解】A.,X如果是1,这个数就不是2和5倍数,也不是3的倍数;
B.,无论X是几,X+X+X=3X都是3的倍数,个位是0,也是2和5的倍数,这个数一定能同时被2、3、5整除;
C.,Y是0,X+X=2X,不一定是3的倍数;
D.,X如果是1,这个数就不是2和5倍数。
故答案为:B
【点睛】本题考查了2、3、5的倍数特征,同时是2和5的倍数的个位一定是0。
三、辨一辨。(正确的画“√”,错误的画“×”)
1.林老师采购了一批书,3元一本,他一共付了253元。( )
【答案】×
【分析】3的倍数特征:各个数位上的数字相加,和要能被3整除。
根据“单价×数量=总价”可知,每本书3元,那么无论买多少本,总价一定是3的倍数,据此解答。
【详解】2+5+3=10
10不能被3整除,253不是3的倍数,所以他不可能付了253元。
原题说法错误。
故答案为:×
【点睛】本题考查3的倍数特征及应用,根据单价、数量、总价之间的关系得出总价一定是3的倍数是解题的关键。
2.因为39、66、156等这些数能被3整除,所以个位上是3,6,9的数一定是能被3整除。( )
【答案】×
【分析】个位上是3,6,9的数是否被3整除,可以通过举例来分析判断:如13,29,46这些数,个位数是3,6,9,但它们不能被3整除。
【详解】如13、29、46这些数,个位数是3、6、9,但它们不能被3整除;所以个位上是3、6、9的数不一定能被3整除。
故答案为:×
【点睛】能被3整除数的特征为:一个数各位上数的和能被3整除,这个数就能被3整除。
3.A是一个非0自然数,A45AA9是一个六位数,这个六位数一定是3的倍数。( )
【答案】√
【分析】3的倍数特征为各个数位相加的和是3的倍数即可。
【详解】4+5+9=18是3的倍数,A+A+A=3A也是3的倍数,则A+4+5+A+A+9是3的倍数,则这个六位数一定是3的倍数。
故答案为:√
【点睛】此题考查3的倍数特征,需熟练掌握。
四、问题解决。
1.秦始皇兵马俑是世界文化遗产,其中二号俑坑中部有264个步兵俑。如果3个3个地数,能正好数完吗?如果5个5个地数呢?为什么?
【答案】3个3个地数,能,264是3的倍数;5个5个地数,不能, 264不是5的倍数
【分析】3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
5的倍数特征:个位上的数字是0或5的数是5的倍数。
步兵佣如果是3的倍数,能正好数完,不是则不能;步兵佣如果是5的倍数,能正好数完,不是则不能,据此分析。
【详解】2+6+4=12
264是3的倍数。
个位上的数字是0或5的数是5的倍数,264不是5的倍数。
答:3个3个地数,能正好数完,因为264是3的倍数;5个5个地数,不能正好数完,因为264不是5的倍数。
2.有三只袋子,里面分别装有4颗、5颗、6颗珠子。
①如果要求在计数器上摆出是3的倍数的三位数,你会用哪只袋子里的珠子去摆(要求珠子全用完)?为什么?【温馨提示:可以在计数器上画一画哦!】
②如果要求摆的是3的倍数的四位数,你还会选择这只袋子吗?为什么?
③对于在计数器上摆是3的倍数的数,你有什么心得吗?
【答案】见详解
【分析】要求摆出是3的倍数的数,根据3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数,据此解答。
【详解】①要求在计数器上摆出是3的倍数的三位数,那么这个三位数各个数位上的数字之和是3的倍数,也就是袋子中珠子的数量是3的倍数,因为6÷3=2,所以6是3的倍数,因此选择装有6颗珠子的袋子去摆,珠子全部用完,且摆出的三位数是3的倍数,作图如下:
②要求摆出的是3的倍数的四位数,那么这个四位数各个数位上的数字之和是3的倍数,也就是所用珠子的总数量是3的倍数,因为6÷3=2,所以6是3的倍数,因此选择装有6颗珠子的袋子去摆,珠子全部用完,且摆出的四位数是3的倍数,作图如下:
③对于在计数器上摆是3的倍数的数,只要选择珠子的总数是3的倍数的袋子,则全部用这些珠子就可以摆出是3的倍数的数。
五、在是3的倍数,那么□最大是( ),最小是( )。
【答案】8;2
【分析】3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
【详解】7×2017=14119
如果□内填0;14119+0=14119;14119÷3=4706……1,14119不是3的倍数,□内最小不能填0。
如果□内填1;14119+1=14120;14120÷3=4706……2,14120不是3的倍数,□内最小不能填1。
如果□内填2;14119+2=14121;14121÷3=4707,14121是3的倍数,□内最小填2。
如果□内填9;14119+9=14128;14128÷3=4709……1,14128不是3的倍数,□内最大不能填9。
如果□内填8;14119+8=14127;14127÷3=4709,14127是3的倍数,□内最大填8。第3课时 3的倍数
一、填空。
1.地球上已知的“死火山”约有2000座,已发现的“活火山”有523座,其中陆地上有455座,海底有68座;我国境内火山大多是死火山,一共660座火山,只有5个活火山(1个在新疆,4个在台湾),6个休眠火山(分别位于五大连池、长白山和腾冲),其中休眠火山就是主要的丰富有景观魅力的火山地貌。这段话中的偶数有( )个,奇数有( )个,( )既是2和3的倍数又是5的倍数;523至少加上( )既是3的倍数又是5的倍数。
2.在□里填一个数字,使每个数都是3的倍数,把可能的结果写在括号里。(首位不为0)
□3( ) 1□7( ) 28□( ) 3□9( )
□47( ) 2□( ) 334□( ) 67□1( )
二、选一选。
1.面包店制作了125个面包,选择( )包装盒正好能把它们装完。
A. B. C. D.
2.三个连续自然数的和一定是( )。
A.3的倍数 B.偶数 C.奇数 D.无法确定
3.由1、4、7三个数字组成的三位数( )。
A.一定是3的倍数 B.一定不是3的倍数
C.一定是奇数 D.有的是3的倍数,有的不是3的倍数
4.4个六位数分别是:、、、,并且是比10小的非零自然数,是0,那么,这四个数中一定能同时被2、3、5整除的数是( )。
A. B. C. D.
三、辨一辨。(正确的画“√”,错误的画“×”)
1.林老师采购了一批书,3元一本,他一共付了253元。( )
2.因为39、66、156等这些数能被3整除,所以个位上是3,6,9的数一定是能被3整除。( )
3.A是一个非0自然数,A45AA9是一个六位数,这个六位数一定是3的倍数。( )
四、问题解决。
1.秦始皇兵马俑是世界文化遗产,其中二号俑坑中部有264个步兵俑。如果3个3个地数,能正好数完吗?如果5个5个地数呢?为什么?
2.有三只袋子,里面分别装有4颗、5颗、6颗珠子。
①如果要求在计数器上摆出是3的倍数的三位数,你会用哪只袋子里的珠子去摆(要求珠子全用完)?为什么?【温馨提示:可以在计数器上画一画哦!】
②如果要求摆的是3的倍数的四位数,你还会选择这只袋子吗?为什么?
③对于在计数器上摆是3的倍数的数,你有什么心得吗?
五、在是3的倍数,那么□最大是( ),最小是( )。