山东省潍坊第一中学2024-2025学年高二下学期第二次质量检测数学试题
一、单选题
1.某企业建立了风险分级管控和隐患排查治理的双重独立预防机制,已知两套机制失效的概率分别为和,则恰有一套机制失效的概率为( )
A. B. C. D.
2.已知随机变量服从正态分布,,则( )
A.0.2 B.0.3 C.0.7 D.0.8
3.若数列的通项公式为,则( )
A.27 B.21 C.15 D.13
4.有10件产品,其中3件是次品,从中不放回地任取2件,若X表示取得次品的件数,则( )
A. B. C. D.1
5.如图给出一个“直角三角形数阵”满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,则第8行第3列的数为( )
A. B. C. D.1
6.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为分,学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为分,则的值为
A. B. C. D.
7.等比数列的各项均为正数,且.设,则数列的前项和( )
A. B. C. D.
8.甲、乙两人进行一场游戏比赛,其规则如下:每一轮两人分别投掷一枚质地均匀的骰子,比较两者的点数大小,其中点数大的得3分,点数小的得0分,点数相同时各得1分.经过三轮比赛,在甲至少有一轮比赛得3分的条件下,乙也至少有一轮比赛得3分的概率为( )
A. B. C. D.
二、多选题
9.已知随机变量,且,则下列说法正确的是( )
A. B.
C. D.
10.已知是等差数列,是其前项和,则下列命题为真命题的是( )
A.若,则
B.若,则
C.若,则
D.若和都为递增数列,则
11.爆竹声声辞旧岁,银花朵朵贺新春.除夕夜里小光用3D投影为家人进行虚拟现实表演,表演分为“燃爆竹、放烟花、辞旧岁、迎新春”4个环节.小光按照以上4个环节的先后顺序进行表演,每个环节表演一次.假设各环节是否表演成功互不影响,若每个环节表演成功的概率均为,则( )
A.事件“成功表演燃爆竹环节”与事件“成功表演辞旧岁环节”互斥
B.“放烟花”、“迎新春”环节均表演成功的概率为
C.表演成功的环节个数的期望为3
D.在表演成功的环节恰为3个的条件下“迎新春”环节表演成功的概率为
三、填空题
12.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,三角形数中蕴含一定的规律性,则第2025个三角形数与第2024个三角形数的差为 .
13.在某市年月的高二质量检测考试中,理科学生的数学成绩服从正态分布.已知参加本次考试的全市理科学生约人.某学生在这次考试中的数学成绩是分,那么他的数学成绩大约排在全市第 名.
(参考数值:,,)
14.已知函数满足,则满足的最大正整数的值为 .
四、解答题
15.已知数列的前项和,
(1)求数列的通项公式;
(2)求数列的前多少项和最大.
16.随着全球经济一体化进程的不断加快,机械零件的加工质量决定了制造工厂的生存,零件加工精度逐渐成为供应商判断制造公司产品的标准.已知某公司生产不同规格的一种产品,根据检测精度的标准,其合格产品的质量y()与尺寸x()之间近似满足关系式(b,c为大于0的常数).现随机从中抽取6件合格产品,测得数据如下:
尺寸x(〕 38 48 58 68 78 88
质量y(〕 16.8 18.8 20.7 22.4 24 25.5
根据测得数据作出如下处理:令,得相关统计量的值如下表:
75.3 24.6 18.3 101.4
(1)根据所给统计数据,求y关于x的回归方程;
(2)若从一批该产品中抽取n件进行检测,已知检测结果的误差满足,求至少需要抽取多少件该产品,才能使误差在(-0.1,0.1)的概率不少于0.9545?
附:①对于样本,i)(i=1,2,…,n),其回归直线的斜率和截距的最小二乘估计公式分别为:,,.②,则
17.在数列中,,是其前n项和,且.
(1)求数列的通项公式;
(2)设,求数列的前n项和.
18.某商场举行抽奖活动,准备了甲 乙两个箱子,甲箱内有2个黑球 4个白球,乙箱内有4个红球 6个黄球.每位顾客可参与一次抽奖,先从甲箱中摸出一个球,如果是黑球,就可以到乙箱中一次性地摸出两个球;如果是白球,就只能到乙箱中摸出一个球.摸出一个红球可获得90元奖金,摸出两个红球可获得180元奖金.
(1)求某顾客摸出红球的概率;
(2)设某家庭四人均参与了抽奖,他们获得的奖金总数为元,求随机变量的数学期望.
19.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
题号 1 2 3 4 5 6 7 8 9 10
答案 C A A C C A B B ABD BC
题号 11
答案 BCD
12.2025
13.
14.12
15.解:(1)当时,;当时,;
所以:;
(2)因为;
所以前16项的和最大.
16.解(1),,所以,即,整理为:,所以y关于x的回归方程为
(2)因为,,所以,要想使误差在(-0.1,0.1)的概率不少于0.9545,则满足,解得:,即至少需要抽取800件该产品,才能使误差在(-0.1,0.1)的概率不少于0.9545.
17.(1)由,可得①,
当时,,解得,
当时,②,
由①-②:
即
整理得
即
又∵,∴
∴,
∴数列是以为首项,2为公差的等差数列,
故.
(2)
∴
∴
∴.
18.(1)设“从甲箱中摸出黑球”,“从甲箱中摸出白球”,“从乙箱中摸出红球”,“某顾客摸出红球”,则.
因为,
所以.
(2)设该家庭每个人获得的奖金为元,则的取值可能为,
则,
,
,
所以随机变量的分布列为
0 90 180
(元).
又因为,所以(元).
19.(1)由题意可知所有可能的取值为:,,
;;
则的分布列如下:
(2),
,,
(i)
即
整理可得:
是以为首项,为公比的等比数列
(ii)由(i)知:
,,……,
作和可得:
表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种实验方案合理.