(共23张PPT)
第21章 二次函数与反比例函数 21.4
二次函数的应用
21.4.1二次函数的应用中的面积、利润最值问题
01
新课导入
03
课堂小结
02
新课讲解
04
课后作业
目录
新课导入
第一部分
PART 01
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here
某水产养殖户用长40m的围网,在水库中围一块矩形的水面,投放鱼苗.要使围成的水面面积最大,则它的边长应是多少米?
新课导入
解:设围成的矩形水面的一边长为xm,那么,矩形水面的另一边长应为(20-x)m.若它的面积是Sm2,则有
S=x(20-x)
将这个函数的表达式配方,得
S=- (x-10)2+100(0新课导入
25
O
5
10
15
20
x/m
50
75
100
S/m2
如图,这个函数的图象是一条开口向下抛物线中的一段,它的顶点坐标是(10,100).所以,当x=10时,函数取得最大值,即S最大值=100(m2).
此时,另一边长 =20-10=10(m).
答:当围成的矩形水面边长都为10m时,它的面积最大为100m2.
新课导入
利用二次函数解决几何图形中的最值问题的要点:
1.根据面积公式、周长公式、勾股定理等建立函数关系式;
2.确定自变量的取值范围;
3.根据开口方向、顶点坐标和自变量的取值范围画草图;
4.根据草图求所得函数在自变量的允许范围内的最大值或最小值.
新课导入
新课讲解
第二部分
PART 02
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?
进价/元 售价/元 数量/件 利润
现价
涨价
降价
分析:
40
60
300
60+n
300-10n
60-m
300+20m
40
40
新课讲解
进价/元 售价/元 销量/件 利润
现价
涨价
降价
40
60
300
60+n
300-10n
60-m
300+20m
40
40
解:(1)设每件涨价n元,利润为y1.
则y1=(60+n – 40 )(300 – 10n)
即y1=-10n2+100n+6000
其中,0≤n≤30.
利润 = 售价×销量-进价×销量
= (售价-进价)×销量
怎样确定n的取值范围?
可得:0≤n≤30.
新课讲解
y1=-10n2+100n+6000 (0≤n≤30)
抛物线y1 =-10n2+100n+6000顶点坐标为 ,所以商品的单价上涨 元时,利润最大,为 元.
(5,6250)
5
6250
n取何值时,y有最大值?最大值是多少?
=-10(n2-10n)+6000
=-10(n-5)2+6250
即涨价情况下,定价65元时,有最大利润6250元.
涨价:
新课讲解
进价/元 售价/元 销量/件 利润
降价 40 60-m 300+20m
解: (2)设每件降价m元,利润为y2.
则y2=(60-m – 40 )(300 +20m)
即y2=-20m2+100m+6000
其中,0≤m≤20.
怎样确定m的取值范围?
可得:0≤m≤20.
降价情况下的最大利润又是多少呢
新课讲解
y2=-20m2+100m+6000 (0≤m≤20)
抛物线y2=-20m2+100m+6000顶点坐标为 ,所以商品的单价下降 元时,利润最大,为 元.
(2.5,6125)
2.5
6125
m取何值时,y有最大值?最大值是多少?
即降价情况下,定价57.5元时,有最大利润6125元.
降价:
=-20(m2-5m)+6000
=-20(m-2.5)2+6125
新课讲解
(2)降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元.
综上可知:
该商品的价格定价为65元时,可获得最大利润6250元.
新课讲解
1.如图,四边形的两条对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?
解:设AC=x,四边形ABCD面积为y,
则BD=(10-x).
即当AC、BD的长均为5时,四边形ABCD的面积最大.
课堂练习
2.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(如图所示),墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少
解:设矩形的长为x m,面积为y m2,则矩形的宽为 m.
∴0课堂练习
3.已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,圆柱的侧面积最大?
解:设矩形的长为xcm,圆柱的侧面积为ycm2,
则矩形的宽为(18-x)cm,绕矩形的长或宽旋转,圆柱的侧面积相等.
有y=2πx(18-x)=-2π(x-9)2+162π(0<x<18).
当x=9时,y有最大值为162π.
即当矩形的长、宽各为9cm时,圆柱的侧面积最大。
课堂练习
4.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,应如何定价才能使利润最大?
解:设所得利润为y元,
由题意得y=x(200-x)-30(200-x)
=-x2+230x-6000
=-(x-115)2+7225 (0当x=115时,y有最大值.
即当这件商品定价为115元时,利润最大.
课堂练习
5.某种文化衫以每件盈利20元的价格出售,每天可售出40件. 若每件降价1元,则每天可多售10件,如果每天要盈利最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元,
由题意得:y=(20-x)(40+10x)
=-10x2+160x+800
=-10(x-8)2+1440 (0<x<20).
当x=8时,y取最大值1440.
即当每件降价8元时,每天的盈利最多。
课堂练习
课堂小结
第三部分
PART 03
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here
图形面积最值问题:
由图形面积公式直接计算列出关系式,再利用二次函数的性质分析、解决问题.
利用二次函数解决利润问题的一般步骤:
①审清题意,理解问题;②分析问题中的变量和常量以及数量之间的关系;③列出函数关系式;④求解数学问题;⑤求解实际问题.
课堂小结
课后作业
第四部分
PART 04
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here
1.从课后习题中选取;
2.完成练习册本课时的习题.
课后作业