2.3一元二次方程的应用期中专题复习(含解析)

文档属性

名称 2.3一元二次方程的应用期中专题复习(含解析)
格式 docx
文件大小 104.4KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2025-04-16 07:43:13

图片预览

文档简介

中小学教育资源及组卷应用平台
2.3一元二次方程的应用期中专题复习浙教版2024—2025学年八年级下册
1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?
2.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) … 34.8 32 29.6 28 …
售价x(元/千克) … 22.6 24 25.2 26 …
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
3.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.
(1)求y与x的函数表达式;
(2)要使销售利润达到800元,销售单价应定为每千克多少元?
4.某商场销售一种品牌羽绒服和防寒服,其中羽绒服的售价是防寒服售价的5倍还多100元,2014年1月份(春节前期)共销售500件,羽绒服与防寒服销量之比是4:1,销售总收入为58.6万元.
(1)求羽绒服和防寒服的售价;
(2)春节后销售进入淡季,2014年2月份羽绒服销量下滑了6m%,售价下滑了4m%,防寒服销量和售价都维持不变,结果销售总收入下降为16.04万元,求m的值.
5.无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,那么销售单价是多少?

6.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:
(1)求y与x之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
7.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式;
(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)
8.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:
(1)填空:每天可售出书   本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
9.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商销售A品牌头盔,此种头盔的进价为30元/个,经测算,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个.
(1)当售价为50元/个时,月销售量为    个.
(2)为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?
10.某商场销售一批儿童玩具,平均每天能售出20件,每件盈利40元.经调查发现:这种玩具的售价每降低1元,平均每天能多售出2件,设每件玩具降价x元.
(1)降价后,每件玩具的利润为   元,平均每天的销售量为   件;(用含x的式子表示)
(2)为了扩大销售,尽快减少库存,商场决定采取降价措施,但需要每天盈利1200元,那么每件玩具应降价多少元?
11.某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w(元).
(1)求y与x之间的函数关系式;
(2)求w与x之间的函数关系式;
(3)该商场规定这种商品每件售价不低于进价且不高于38元,商品要想获得600元的利润,每件商品的售价应定为多少元?
12.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:
每箱售价x(元) 68 67 66 65 … 40
每天销量y(箱) 40 45 50 55 … 180
已知y与x之间的函数关系是一次函数.
(1)求y与x的函数解析式;
(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?
(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.
13.某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.
(1)平均每天的销售量为    本(用含x的代数式表示);
(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?
14.某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司销售A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.
(1)求该公司销售A产品每次的增长率;
(2)若A产品每套盈利2万元,则平均每月可售30套,为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降0.5万元,公司平均每月可多售出20套;若该公司在5月份要获利70万元,则每套A产品需降价多少?
15.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.
(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
参考答案
1.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,
根据题意得,(60﹣x﹣40)(300+20x)=6080,
解得x1=1,x2=4,
又顾客得实惠,故取x=4,即定价为56元,
答:应将销售单价定为56元.
2.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
将(22.6,34.8)、(24,32)代入y=kx+b,
,解得:,
∴y与x之间的函数关系式为y=﹣2x+80.
当x=23.5时,y=﹣2x+80=33.
答:当天该水果的销售量为33千克.
(2)根据题意得:(x﹣20)(﹣2x+80)=150,
解得:x1=35,x2=25.
∵20≤x≤32,
∴x=25.
答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.
3.【解答】解:(1)当0<x<20时,y=60;
当20≤x≤80时,设y与x的函数表达式为y=kx+b,
把(20,60),(80,0)代入,可得

解得,
∴y=﹣x+80,
∴y与x的函数表达式为y=;
(2)若销售利润达到800元,则
(x﹣20)(﹣x+80)=800,
解得x1=40,x2=60,
∴要使销售利润达到800元,销售单价应定为每千克40元或60元.
4.【解答】解:(1)设防寒服的售价为x元,则羽绒服的售价为5x+100元,
∵2014年1月份(春节前期)共销售500件,羽绒服与防寒服销量之比是4:1,
∴羽绒服与防寒服销量分别为:400件和100件,
根据题意得出:400(5x+100)+100x=58.6万,
解得:x=260,
∴5x+100=1400(元),
答:羽绒服和防寒服的售价为:1400元,260元;
(2)∵2014年2月份羽绒服销量下滑了6m%,售价下滑了4m%,防寒服销量和售价都维持不变,结果销售总收入下降为16.04万元,
∴400(1﹣6m%)×1400×(1﹣4m%)+100×260=160400
解得:m1=10,m2=(不合题意舍去),
答:m的值为10.
5.【解答】解:(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
根据题意得
解得k=﹣50,b=850,
所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
(2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
解得x1=9,x2=13(不合题意,舍去),
∵销售单价不得高于12元/桶,也不得低于7元/桶,
∴x=13不合题意,
答:若该经营部希望日均获利1350元,那么销售单价是9元.
6.【解答】解:(1)设一次函数解析式为:y=kx+b
当x=2,y=120;当x=4,y=140;
∴,
解得:,
∴y与x之间的函数关系式为y=10x+100;
(2)由题意得:
(60﹣40﹣x)(10 x+100)=2090,
整理得:x2﹣10x+9=0,
解得:x1=1.x2=9,
∵让顾客得到更大的实惠,
∴x=9,
答:商贸公司要想获利2090元,则这种干果每千克应降价9元.
7.【解答】解:(1)设y与x之间的函数关系式y=kx+b(k≠0),
把(10,40),(18,24)代入得:,
解得:,
∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);
(2)根据题意得:(x﹣10)(﹣2x+60)=150,
整理,得:x2﹣40x+375=0,
解得:x1=15,x2=25(不合题意,舍去).
答:该经销商想要每天获得150元的销售利润,销售价应定为15元.
8.【解答】解:(1)∵每本书上涨了x元,
∴每天可售出书(300﹣10x)本.
故答案为:300﹣10x.
(2)设每本书上涨了x元(x≤10),
根据题意得:(40﹣30+x)(300﹣10x)=3750,
整理,得:x2﹣20x+75=0,
解得:x1=5,x2=15(不合题意,舍去).
答:若书店想每天获得3750元的利润,每本书应涨价5元.
9.【解答】解:(1)根据题意得:当售价为50元/个时,月销售量为600﹣10×(50﹣40)=600﹣10×10=500(个).
故答案为:500;
(2)设该品牌头盔的实际售价应定为x元/个,则每个的销售利润为(x﹣30)元,月销售量为600﹣10×(x﹣40)=(1000﹣10x)个,
根据题意得:(x﹣30)(1000﹣10x)=10000,
整理得:x2﹣130x+4000=0,
解得:x1=50,x2=80,
又∵尽可能让顾客得到实惠,
∴x=50.
答:该品牌头盔的实际售价应定为50元/个.
10.【解答】解:(1)∵每件玩具降价x元,
∴每件玩具的利润为(40﹣x)元,销量为(20+2x)件.
故答案为:(40﹣x);(20+2x).
(2)依题意,得:(40﹣x)(20+2x)=1200,
整理,得:x2﹣30x+200=0,
解得:x1=10,x2=20.
∵为了扩大销售,增加盈利,尽快减少库存,
∴x=20.
答:每件玩具应降价20元.
11.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
由所给函数图象可知:,
解得,
故y与x的函数关系式为y=﹣2x+120;
(2)∵y=﹣2x+120,
∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400,
即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;
(3)根据题意得:600=﹣2x2+160x﹣2400,
∴x1=30,x2=50(舍),
∵20≤x≤38,
∴x=30.
答:每件商品的售价应定为30元.
12.【解答】解:(1)设y与x之间的函数关系是:y=kx+b,
根据题意可得:,
解得:,
故y与x之间的函数关系是:y=﹣5x+380;
(2)由题意可得:(x﹣40)(﹣5x+380)=1600,
解得:x1=56,x2=60,
顾客要得到实惠,售价低,所以x=60舍去,所以x=56,
答:要使顾客获得实惠,每箱售价是56元;
(3)在(2)的条件下,x=56时,y=100,
17号开始,到31号共计15天,由题意得到方程:
∴1600×16=[56×(1﹣m%)﹣40×(1﹣10%)]×100×(1+2m%)×15+7120,
解得:m1=20,m2=﹣(舍去),
答:m的值为20.
13.【解答】解:(1)由题意可知,每天的销售量为(100+10x)本.
故答案为:(100+10x).
(2)由题意可得,
(60﹣40﹣x)(100+10x)=2240,
整理得x2﹣10x+24=0,
解得x1=4,x2=6,
∵要求每本售价不低于55元,
∴x=4符合题意.
故每本画册应降价4元.
14.【解答】解:(1)设该公司销售A产品每次的增长率为x,
依题意,得:20(1+x)2=45,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
答:该公司销售A产品每次的增长率为50%.
(2)设每套A产品需降价y万元,则平均每月可售出(30+×20)套,
依题意,得:(2﹣y)(30+×20)=70,
整理,得:4y2﹣5y+1=0,
解得:y1=,y2=1.
∵尽量减少库存,
∴y=1.
答:每套A产品需降价1万元.
15.【解答】解:(1)设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,
依题意,得:(x﹣40)(140﹣2x)=(60﹣40)×20,
整理,得:x2﹣110x+3000=0,
解得:x1=50,x2=60(舍去).
答:售价应定为50元;
(2)该商品需要打a折销售,
由题意,得,62.5×≤50,
解得:a≤8,
答:该商品至少需打8折销售.
21世纪教育网(www.21cnjy.com)
同课章节目录