首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
青岛版(2024)
九年级下册
第5章 对函数的再探索
5.7二次函数的应用
5.7二次函数的应用同步练习(含解析)
文档属性
名称
5.7二次函数的应用同步练习(含解析)
格式
docx
文件大小
1.3MB
资源类型
试卷
版本资源
青岛版
科目
数学
更新时间
2025-04-18 10:13:11
点击下载
图片预览
1
2
3
4
5
文档简介
中小学教育资源及组卷应用平台
5.7二次函数的应用
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④ B.①② C.②③④ D.②③
2.如图,直线与两坐标轴交于A,B两点,点P是线段AB上一动点(不与A,B两端点重合),过点P作PC⊥x轴于点C,作PD⊥y轴于点D,小明认为矩形PCOD的周长不变且始终为6;小红认为矩形PCOD的面积有最大值,最大值为3.关于小明与小红的判断,下面说法正确的是( )
A.小明与小红都是正确的 B.小明与小红都是错误的
C.小明是正确的,小红是错误的 D.小明是错误的,小红是正确的
3.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为
A. B. C. D.
4.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),现有四种方案供选择(如图):
A方案为一个封闭的矩形;
B方案为一个等边三角形,并留一处宽的门;
C方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留宽的门;
D方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留宽的门.已知计划中的篱笆(不包括门)总长为,则能建成的饲养室中面积最大的方案为( )
A. B. C. D.
5.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是( )
A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m
B.小球距O点水平距离超过4米呈下降趋势
C.小球落地点距O点水平距离为7米
D.斜坡的坡度为1:2
6.某种产品按质量分为个档次,生产最低档次产品,每件获利润元,每提高一个档次,每件产品利润增加元,用同样工时,最低档次产品每天可生产件,提高一个档次将减少件.如果用相同的工时生产,总获利润最大的产品是第档次(最低档次为第一档次,档次依次随质量增加),那么等于( )
A. B. C. D.
7.竖直向上发射的小球的高度关于运动时间的函数表达式为,其图象如图所示,若小球发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
A.第3秒 B.第3.5秒 C.第4秒 D.第6秒
8.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过( )秒,四边形APQC的面积最小.
A.1 B.2 C.3 D.4
9.如图,在Rt△ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,则S关于t的函数图象大致为( )
A. B.
C. D.
10.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是( )
A. B. C. D.
11.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻在一定条件下,直杆的太阳影子长度单位:米与时刻单位:时的关系满足函数关系是常数,如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t是()
A. B.13 C. D.
12.如图,抛物线交x轴的负半轴于点A,点B是y轴的正半轴上一点,点A关于点B的对称点A 恰好落在抛物线上.过点A 作x轴的平行线交抛物线于另一点C,则点A 的纵坐标为()
A.1.5 B.2 C.2.5 D.3
二、填空题
13.为庆祝嫦娥五号登月成功,某工艺厂生产了一款纪念品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就多售出5件,但要求销售单价不得低于成本.则该工艺厂将每件的销售价定为 元时,可使每天所获销售利润最大.
14.某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)将随计划所定的x的值而确定,那么y与x之间的关系式应表示为 .
15.如图,在平面直角坐标系中,点A(4,8)在抛物线上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为 .
16.为了让农民能种植高产、易发芽的种子,某农科实验基地大力开展种子实验.该实验基地两年前有100种种子,经过两年不断地努力,现在已有144种种子.若培育的种子平均每年的增长率为x,则x的值为 .
17.某网店某种商品成本为50元/件,售价为60元/件时,每天可销售100件;售价单价高于60元时,每涨价1元,日销售量就减少2件.据此,当销售单价为 元时,网店该商品每天盈利最多.
三、解答题
18.如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
19.如图,在直角坐标系xOy中有一梯形ABCO,顶点C在x正半轴上,A、B两点在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.点P在x轴上,从点(﹣2,0)出发,以每秒1个单位长度的速度沿x轴向正方向运动;同时,过点P作直线l,使直线l和x轴向正方向夹角为30°.设点P运动了t秒,直线l扫过梯形ABCO的面积为S扫.
(1)求A、B两点的坐标;
(2)当t=2秒时,求S扫的值;
(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的时点P的坐标.
20.已知抛物线与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.
21.某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数表达式为
(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数表达式;
(2)当该产品的售价为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?
22.已知函数均为一次函数,m为常数.
(1)如图1,将直线绕点逆时针旋转45°得到直线,直线交y轴于点B.若直线恰好是中某个函数的图象,请直接写出点B坐标以及m可能的值;
(2)若存在实数b,使得成立,求函数图象间的距离;
(3)当时,函数图象分别交x轴,y轴于C,E两点,图象交x轴于D点,将函数的图象最低点F向上平移个单位后刚好落在一次函数图象上,设的图象,线段,线段围成的图形面积为S,试利用初中知识,探究S的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)
23.如图,抛物线与x轴交于点A(﹣, 0),点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的解析式;
(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣<t<2),求△ABN的面积s与t的函数解析式;
(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.
24.已知y是关于x的函数,若其函数图象经过点P(t,t),则称点P为函数图象上的“和谐点”.
(1)求出直线y=3x﹣2的“和谐点”坐标;
(2)若抛物线y=﹣x2+(a+1)x﹣a+1上有“和谐点”,且“和谐点”为A(x1,y1)和B(x2,y2),求W=x12+x22的最小值;
(3)若函数y=x2+(m﹣t+1)x+n+t﹣2的图象上存在唯一的一个“和谐点”且当2≤m≤3时,n的最小值为t,求t的值.
《5.7二次函数的应用》参考答案
题号 1 2 3 4 5 6 7 8 9 10
答案 D C B C A C C C C C
题号 11 12
答案 C B
1.D
【分析】根据函数的图象中的信息判断即可.
【详解】①由图象知小球在空中达到的最大高度是;故①错误;
②小球抛出3秒后,速度越来越快;故②正确;
③小球抛出3秒时达到最高点即速度为0;故③正确;
④设函数解析式为:,
把代入得,解得,
∴函数解析式为,
把代入解析式得,,
解得:或,
∴小球的高度时,或,故④错误;
故选D.
【点睛】本题考查了二次函数的应用,解此题的关键是正确的理解题意
2.C
【分析】设P(x,)().根据周长公式求出周长,即可判定小明的正误;根据面积公式求出面积,结合二次函数的性质,即可判断小红的正误.
【详解】设P(x,)(),
∵,
∴周长不变,且始终为6,即小明正确;
∵,
∴当时,最大,最大为,即小红是错误的.
故选C
【点睛】本题考查一次函数与二次函数的综合.掌握二次函数的性质是解题关键.
3.B
【详解】分析: 根据抛物线的对称性即可判断出对称轴的范围.
详解:设对称轴为,
由(,)和(,)可知,,
由(,)和(,)可知,,
∴,
故选B.
点睛:考查抛物线的对称性,熟练运用抛物线的对称性质是解题的关键.
4.C
【分析】设建成的饲养室的面积为,先根据篱笆总长、矩形与等边三角形的面积公式求出的函数关系式,再利用二次函数的性质求最值,然后比较大小即可得.
【详解】设建成的饲养室的面积为,
对于A选项,如图(1),设边的长为,则,
,
,
由矩形的面积公式得:,
则在范围内,当时,取得最大值,最大值为18;
对于B选项,如图(2),设,则,解得,
由等边三角形的性质得:AB边上的高为,
则;
对于C选项,如图(3),设,则,,
,
,
由矩形的面积公式得:,
则在范围内,当时,取得最大值,最大值为;
对于D选项,如图(4),设,则,
,
,
由矩形的面积公式得:,
则在范围内,当时,取得最大值,最大值为16;
因为,
所以建成的饲养室中面积最大的方案是C方案,
故选:C.
【点睛】本题考查了二次函数的应用、矩形与等边三角形的面积公式,依据题意,分别求出各图形的面积的函数表达式是解题关键.
5.A
【分析】求出当y=7.5时,x的值,判定选项A;根据二次函数的性质求出对称轴,根据二次函数性质判断选项B;求出抛物线与直线的交点,判断选项C,根据直线解析式和坡度的定义判断选项D.
【详解】当y=7.5时,7.5=4x﹣x2,
整理得x2﹣8x+15=0,
解得,x1=3,x2=5,
∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5cm,选项A错误,符合题意;
y=4x﹣x2
=﹣(x﹣4)2+8,
则抛物线的对称轴为x=4,
∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,选项B正确,不符合题意;
,
解得,,,
则小球落地点距O点水平距离为7米,选项C正确,不符合题意;
∵斜坡可以用一次函数y=x刻画,
∴斜坡的坡度为1:2,选项D正确,不符合题意;
故选A.
【点睛】本题考查的是解直角三角形的——坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.
6.C
【分析】第档次产品比最低档次产品提高了个档次,则数量在60的基础上减少了,每件产品利润在8的基础上增加,据此可求出总利润关系,求出最值即可.
【详解】解:设总利润为y元,
∵第档次产品比最低档次产品提高了个档次,
∴每天利润为,
∴当时,产品利润最大,每天获利864元,
故选C.
【点睛】本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.
7.C
【分析】根据题中已知条件求出函数h=at2+bt的对称轴t=4,在t=4s时,小球的高度最高.
【详解】解:由题意可知:小球发射后第2秒与第6秒时的高度相等,
即4a+2b=36a+6b,
解得b=﹣8a,
函数h=at2+bt的对称轴t=﹣=4,
故在t=4s时,小球的高度最高,
故选:C.
【点睛】本题主要考查了二次函数的实际应用,求出抛物线对称轴是解题关键.
8.C
【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.
【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:
S=S△ABC-S△PBQ
= ×12×6- (6-t)×2t
=t2-6t+36
=(t-3)2+27.
∴当t=3s时,S取得最小值.
故选C.
【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.
9.C
【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离
a时,如图2,,根据函数关系式即可得到结论.
【详解】解:∵在直角三角形ABC中,∠C=90°,AC=BC,
∴△ABC是等腰直角三角形,
∵EF⊥BC,ED⊥AC,
∴四边形EFCD是矩形,
∵E是AB的中点,
∴EF=AC,DE=BC,
∴EF=ED,
∴四边形EFCD是正方形,
设正方形的边长为a,如图1,当移动的距离
当移动的距离>a 时,如图2,,
∴S关于t的函数图象大致为C选项,故选:C.
【点睛】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.
10.C
【详解】试题分析:解决本题的关键是正确确定y与x之间的函数解析式.
解:∵运动时间x(s),则CP=x,CO=2x;
∴S△CPO=CP CO=x 2x=x2.
∴则△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0≤x≤3),
故选C.
考点:动点问题的函数图象;二次函数的图象.
11.C
【详解】把(12,0.6)、(13,0.35)、(14,0.4)代入l=at2+bt+c中得:
,解得,
∴l=0.15t2-4t+27,
∵0.15>0,
∴l有最小值,
当t=-=≈13.33时,该地影子最短;
故选C.
【点睛】错因分析 中等题.失分原因:没有理解本题考查的真正意图,通过二次函数图象上的点结合函数性质,推断对称轴位置.
12.B
【分析】先求出点A坐标,利用对称可得点横坐标,代入可得纵坐标.
【详解】解:令得,即
解得
点B是y轴的正半轴上一点,点A关于点B的对称点A 恰好落在抛物线上
点的横坐标为1
当时,
所以点A 的纵坐标为2.
故选:B
【点睛】本题考查了二次函数的图像,熟练利用函数解析式求点的坐标是解题的关键.
13.80
【分析】根据每天获得利润=单件利润×销售量列出二次函数即可求解.
【详解】解:设销售单价降低x元时,则销售单价是(100-x)元时,每天获利y元.
根据题意,得
y=(100-50-x)(50+5x)
=-5x2+200x+2500
=-5(x-20)2+4500
∵-5<0,当x=20时,y有最大值,
即100-x=80,80>50,
答:当销售单价是80元时,每天获利最多.
故答案为80.
【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.
14.或
【分析】根据平均增长问题,可得答案.
【详解】解:y与x之间的关系应表示为y=2(x+1)2.
故答案为:y=2(x+1)2.
【点睛】本题考查了函数关系式,利用增长问题获得函数解析式是解题关键,注意增加x倍是原来的(x+1)倍.
15.
【分析】利用待定系数法求出函数解析式,然后设点C横坐标为m,则CD=CE=2m,从而得出点E坐标为(m,8 2m),将点E坐标代入解析式求出m即可解决问题.
【详解】解:把A(4,8)代入中得8=16a,
解得a=,
∴,
设点C横坐标为m,则CD=CE=2m,
∴点E坐标为(m,8﹣2m),
∴=8﹣2m,
解得m=(舍)或m=,
∴CD=2m=,
故答案为:.
【点睛】本题考查二次函数的应用,待定系数法,解题关键是设出点C横坐标,表示出点E的坐标.
16.20%
【分析】利用该实验基地现在拥有的种子种数=该实验基地两年前拥有的种子种数×(1+培育的种子平均每年的增长率)2,可得出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.
【详解】解:根据题意得:,
解得:(不符合题意,舍去),
∴x的值为.
故答案为:.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
17.80
【分析】直接利用每件利润×销量=总利润,进而得出每天盈利与x的关系式,配方即可得出答案.
【详解】解:设当销售单价为x元时,每天盈利为y元,
则y=(x-50)[100-2(x-60)]
=-2x2+320x-11000
=-2(x-80)2+1800,
∵-2<0,
∴当x=80时,y有最大值,且为1800,
答:当销售单价为80元时,每天获取的利润最大,最大利润是1800元.
【点睛】此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.
18.(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
【详解】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;
(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
详解:(1)依题意得:,解得:,
∴抛物线的解析式为.
∵对称轴为,且抛物线经过,
∴把、分别代入直线,
得,解之得:,
∴直线的解析式为.
(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,
∴.即当点到点的距离与到点的距离之和最小时的坐标为.
(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).
(3)设,又,,
∴,,,
①若点为直角顶点,则,即:解得:,
②若点为直角顶点,则,即:解得:,
③若点为直角顶点,则,即:解得:
,.
综上所述的坐标为或或或.
点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.
19.(1)(1,),(4,);(2);(3);P的坐标为(5﹣2,0).
【分析】(1)两底的差的一半就是A的横坐标;过A、B作x轴的垂线,在构建的直角三角形中根据OA的长及两底的差便可求出梯形的高即A点的纵坐标.得出A点坐标后向右平移3个单位就是B点的坐标.
(2)当t=2时,P、O两点重合,如果设直线l与AB的交点为D,那么AD=2,而AD边上的高就是A点的纵坐标,由此可求出△ADO的面积及直线l扫过的面积.
(3)本题要分三种情况进行讨论:
①当P在原点左侧,即当0≤t<2时,重合部分是个三角形,如果设直线l与AO,AB分别交于E,F,可根据△AEF∽△AOD,用相似比求出其面积.即可得出S,t的函数关系式.
②当P在O点右侧(包括和O重合),而F点在B点左侧时,即当2≤t<3时,扫过部分是个梯形,可根据梯形的面积计算方法即可得出直线l扫过部分的面积.也就能得出S,t的函数关系式.
③当P点在C点左侧(包括和C点重合),F点在B点右侧(包括和B点重合),即当3≤t≤7时,扫过部分是个五边形,可用梯形ABCO的面积减去△MPC的面积来得出S,t的函数关系式.
【详解】(1)过A作AD⊥OC于D,过B作BE⊥OC于E,则ADEB是矩形.
∵ADEB是矩形,∴AD=BE=3.
∵AO=BC,∴△AOD≌△BCE,∴OD=CE=(OC-AB)÷2=1.
∵AO=2,∴AD==,∴A(1,).
∵OE=OD+DE=1+3=4,BE=AD=,∴B(4,).
∵BC=2EC,∴∠EBC=30°,∴∠OCB=60°.
(2)当t=2时,P、O两点重合,如果设直线l与AB的交点为D,那么AD=2,而AD边上的高就是A点的纵坐标,∴S扫==.
(3)分三种情况讨论:①当0≤t<2时,如图1,△AEF∽△AOD,,∴S扫t2;
②当2≤t<3时,如图2,S扫=S△AOD+S□DOPF(t﹣2),∴S扫;
③当3≤t≤7时,如图3,过B作直线EB∥直线l交OC于E.
∵∠BEC=30°,∠OCB=60°,∴∠CBE=90°,∴EC=2BC=4,∴S△CEB=,CP=7-t.
∵MP∥BE,∴,∴S△CPM=,∴S扫=4S△CPM=4,∴S扫t2
综上所述: .
∵t2,∴t2﹣14t+41=0,t1=7﹣2,t2=7+27(舍),∴P的坐标为(5﹣2,0).
【点睛】本题考查了梯形的性质,相似三角形的判定和性质,二次函数的综合应用等知识点.主要考查了学生分类讨论和数形结合的数学思想方法.
20.(1),顶点坐标为(2,1).
(2)详见解析
【分析】(1)利用交点式得出,从而得出a求出的值,再利用配方法求出顶点坐标即可.
(2)根据左加右减得出抛物线的解析式为y=-x2,从而得出答案,答案不唯一.
【详解】解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),
∴可设抛物线解析式为.
把C(0,-3)代入得:3a=-3,解得:a=-1.
∴抛物线解析式为,即.
∵,
∴顶点坐标为(2,1).
(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,
平移后抛物线的顶点为(0,0)落在直线y=-x上.
21.(1) 当40≤x<60时,W=-2x2+200x-4200,当60≤x≤70时,W=-x2+110x-2400;(2) 该产品的售价为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元.
【分析】(1)根据:年利润=(售价-成本)×年销售量,结合x的取值范围可列函数关系式;
(2)将(1)中两个二次函数配方后依据二次函数的性质可得其最值情况,比较后可得答案.
【详解】(1)当40≤x<60时,W=(x-30)(-2x+140)=-2x2+200x-4200,
当60≤x≤70时,W=(x-30)(-x+80)=-x2+110x-2400;
(2)当40≤x<60时,W=-2x2+200x-4200=-2(x-50)2+800,
∴当x=50时,W取得最大值,最大值为800万元;
当60≤x≤70时,W=-x2+110x-2400=-(x-55)2+625,
∴当x>55时,W随x的增大而减小,
∴当x=60时,W取得最大值,最大值为:-(60-55)2+625=600,
∵800>600,
∴当x=50时,W取得最大值800,
答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元.
【点睛】本题主要考查了二次函数的实际应用,梳理题目中的数量关系,得出相等关系后分情况列出函数解析式,熟练运用二次函数性质求最值是解题的关键.
22.(1)(0,1);1或0 (2) (3)
【分析】(1)由题意,可得点B坐标,进而求得直线的解析式,再分情况讨论即可解的m值;
(2)由非负性解得m和b的值,进而得到两个函数解析式,设与x轴、y轴交于T,P,分别与x轴、y轴交于G,H,连接GP,TH,证得四边形GPTH是正方形,求出GP即为距离;
(3)先根据解析式,用m表示出点C、E、D的坐标以及y关于x的表达式为,得知y是关于x的二次函数且开口向上、最低点为其顶点,根据坐标平移规则,得到关于m的方程,解出m值,即可得知点D 、E的坐标且抛物线过D、E点,观察图象,即可得出S的大体范围,如:,较小的可为平行于DE且与抛物线相切时围成的图形面积.
【详解】解:(1)由题意可得点B坐标为(0,1),
设直线的表达式为y=kx+1,将点A(-1,0)代入得:k=1,
所以直线的表达式为:y=x+1,
若直线恰好是的图象,则2m-1=1,解得:m=1,
若直线恰好是的图象,则2m+1=1,解得:m=0,
综上,,或者
(2)如图,
,
,
,
设与x轴、y轴交于T,P,分别与x轴、y轴交于G,H,连接GP,TH
,
四边形GPTH是正方形
,,即
;
(3),
分别交x轴,y轴于C,E两点
,
图象交x轴于D点
二次函数开口向上,它的图象最低点在顶点
顶点
抛物线顶点F向上平移,刚好在一次函数图象上
且
,
∴,
由,得到,,
由得到与x轴,y轴交点是,,,
抛物线经过,两点
的图象,线段OD,线段OE围成的图形是封闭图形,则S即为该封闭图形的面积
探究办法:利用规则图形面积来估算不规则图形的面积.
探究过程:
①观察大于S的情况.
很容易发现
,
,
(若有S小于其他值情况,只要合理,参照赋分.)
②观察小于S的情况.
选取小于S的几个特殊值来估计更精确的S的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置:
位置一:如图
当直线MN与DE平行且与抛物线有唯一交点时,设直线MN与x,y轴分别交于M,N
,
直线
设直线
,
直线
点
,
位置二:如图
当直线DR与抛物线有唯一交点时,直线DR与y轴交于点R
设直线,
直线
,
直线
点
,
位置三:如图
当直线EQ与抛物线有唯一交点时,直线EQ与x轴交于点Q
设直线
,
直线
点
,
我们发现:在曲线DE两端位置时的三角形的面积远离S的值,由此估计在曲线DE靠近中间部分时取值越接近S的值
探究的结论:按上述方法可得一个取值范围
(备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)
【点睛】本题是一道综合性很强的代数与几何相结合的压轴题,知识面广,涉及有旋转的性质、坐标平移规则、非负数的性质、一次函数的图象与性质、二次函数的图象与性质、一元二次方程、不规则图形面积的估计等知识,解答的关键是认真审题,找出相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,利用相关信息进行推理、探究、发现和计算.
23.(1)y=﹣x2+x+1;(2)S=﹣t2+t+;(3)点N的坐标为(1,2)
【分析】(1)设抛物线的解析式为y=ax2+bx+c,然后利用待定系数法即可得;
(2)当﹣<t<2时,点N在x轴上方,则NP等于点N的纵坐标,求出AB的长,然后利用三角形面积公式即可得;
(3)根据相似三角形的性质可得PN=2PO,由于PN=﹣t2+t+1,PO=|t|=t,可得关于t的方程,解这个方程即可解决这个问题.
【详解】解:(1)设抛物线的解析式为y=ax2+bx+c,由题意可得: ,
解得:,
∴抛物线的函数关系式为y=﹣x2+x+1;
(2)当﹣<t<2时,yN>0,
∴NP=|yN|=yN=﹣t2+t+1,
∴S=AB PN
=×(2+)×(﹣t2+t+1)
=(﹣t2+t+1)
=﹣t2+t+;
(3)∵△OPN∽△COB,
∴,
∴,
∴PN=2PO,
当0<t<2时,PN=|yN|=yN=﹣t2+t+1,PO=|t|=t,
∴﹣t2+t+1=2t,
整理得:3t2﹣t﹣2=0,
解得:t1=﹣,t2=1.
∵﹣<0,0<1<2,
∴t=1,此时点N的坐标为(1,2),
故点N的坐标为(1,2).
【点睛】本题考查了二次函数与几何综合题,涉及了待定系数法、相似三角形的性质、解一元二次方程等,综合性较强,有一定的难度,解本题需要注意的是:用点的坐标表示线段长度时,应该用绝对值表示线段的长度,根据坐标的正负化简绝对值,解方程的要进行检验,不符合条件的要舍去,熟练掌握和灵活运用相关知识是解题的关键.
24.(1);(2)w有最小值是;(3)t的值为3﹣或4+.
【分析】(1)根据“和谐点”的坐标特征设出坐标,代入双曲线中,有解则有“和谐点”;
(2)设抛物线“和谐点”的坐标为,代入抛物线的关系式中得到关于x的一元二次方程,因为有两个“和谐点”,则这两个“和谐点”的横坐标就是这个一元二次方程的两个根,再由根与系数的关系得:两根和与两根据积的式子,得到w关于a的二次函数,求最小值即可;
(3)设函数“和谐点”的坐标为,代入函数的关系式中得到关于x的一元二次方程,因为有一个“和谐点”,则,得到n=(m﹣t)2﹣t+2,把它看成一个二次函数,对称轴m=t,分三种情况讨论即可.
【详解】解:(1)设“和谐点”的坐标为,
将点坐标代入直线y=3x﹣2得:t=3t﹣2,
解得:t=1,
故“和谐点”的坐标为;
(2)设抛物线“和谐点”的坐标为,
代入抛物线y=﹣x2+(a+1)x﹣a+1中得:
x=﹣x2+(a+1)x﹣a+1,
﹣x2+ax﹣a+1=0,
∵“和谐点”为和,
∴x1、x2是方程﹣x2+ax﹣a+1=0的两个根,
则x1+x2=﹣=,x1 x2==2a﹣2,
w=x12+x22=(x1+x2)2﹣2x1x2=()2﹣2(2a﹣2),
w=﹣4a+4=(a﹣)2+,
∵>0,
∴抛物线开口向上当a=时,w有最小值是;
(3)设函数“和谐点”的坐标为,
代入函数y=x2+(m﹣t+1)x+n+t﹣2得:
x=x2+(m﹣t+1)x+n+t﹣2,
x2+(m﹣t)x+n+t﹣2=0,
∵存在唯一的一个“和谐点”,
∴=(m﹣t)2﹣4××(n+t﹣2)=0,
n=(m﹣t)2﹣t+2,
这是一个n关于m的二次函数,图象为抛物线,开口向上,对称轴为m=t,对称轴左侧,n随m的增大而减小;对称轴右侧,n随m的增大而增大;
①t<2,当2≤m≤3时,在对称轴右侧递增,
∴当m=2时,n有最小值为t,
即(2﹣t)2﹣t+2=t,
t2﹣6t+6=0,
解得:t1=3+>2(舍去),t2=3﹣,
②t>3,当2≤m≤3时,在对称轴左侧递减,
∴当m=3时,n有最小值为t,
即(3﹣t)2﹣t+2=t,
解得:t1=4+,t2=4﹣<3(舍),
③当2≤t≤3,当2≤m≤3时,n有最小值为﹣t+2,
∴﹣t+2=t,
t=1<2(舍去),
综上所以述:t的值为3﹣或4+.
【点睛】本题考查了二次函数的性质及一元二次方程的根与二次函数的关系;明确一元二次方程根据与系数的关系,方程的解与根的判别式的关系;尤其是二次函数的最值问题,在自变量的所有取值中:①当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,函数有最小值;②当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,函数有最大值;如果在规定的取值中,要看图象和增减性来判断.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
点击下载
同课章节目录
第5章 对函数的再探索
5.1函数与它的表示法
5.2 反比例函数
5.3二次函数
5.4二次函数的图像与性质
5.5确定二次函数的表达式
5.6二次函数的图像与一元二次方程
5.7二次函数的应用
第6章 频率与概率
6.1随机事件
6.2频数与频率
6.3频数直方图
6.4随机现象的变化趋势
6.5事件的概率
6.6简单的概率计算
6.7利用画树状图和列表计算概率
第7章 空间图形的初步认识
7.1几种常见的几何体
7.2直棱柱的侧面展开图
7.3圆柱的侧面展开图
7.4圆锥的侧面展开图
第8章 投影与识图
8.1中心投影
8.2平行投影
8.3物体的三视图
点击下载
VIP下载