山东安丘市青云学府高中数学人教B版必修五3.5.2《简单线性规划》课件(13张ppt)+教学设计 (2份打包)

文档属性

名称 山东安丘市青云学府高中数学人教B版必修五3.5.2《简单线性规划》课件(13张ppt)+教学设计 (2份打包)
格式 zip
文件大小 244.4KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2016-05-28 22:19:33

文档简介

课件13张PPT。简单线性规划画出不等式组 表示的平面区域。3x+5y≤ 25 x -4y≤ - 3x≥13x+5y≤25x-4y≤-3x≥1问题2:y有无最大(小)值?xyo问题3:2x+y有无最大(小)值?xyox=1CB 设z=2x+y,式中变量x、y满足下列条件       ,
求z的最大值和最小值。              
                 3x+5y≤25x-4y≤-3x≥1Ax-4y=-33x+5y=25xyox-4y=-3x=1C 设z=2x+y,式中变量x、y满足下列条件        ,
求z的最大值和最小值。                BA3x+5y=25问题 1: 将z=2x+y变形?问题 2: z几何意义是_____________________________。斜率为-2的直线在y轴上的截距 则直线 l:
2x+y=z是一簇与 l0平行的直线,故
直线 l 可通过平移直线l0而得,当直
线往右上方平移时z 逐渐增大:
当l 过点 B(1,1)时,z 最小,即zmin=3
当l 过点A(5,2)时,z最大,即
zmax=2×5+2=12 。 析: 作直线l0 :2x+y=0 ,最优解:使目标函数达到最大值或 最小值 的可 行 解。 线性约束条件:约束条件中均为关于x、y的一次不等式或方程。有关概念 约束条件:由x、y的不等式(方程)构成的不等式组。目标函数:欲求最值的关于x、y的一次解析式。线性目标函数:欲求最值的解析式是关于x、y的一次解析式。线性规划:求线性目标函数在线性约束条件下的最大值或最小值。可行解:满足线性约束条件的解(x,y)。 可行域:所有可行解组成的集合。xyox-4y=-3x=1CBA3x+5y=25 设Z=2x+y,式中变量x、y

满足下列条件        ,

求z的最大值和最小值。              
                  例1:设z=2x-y,式中变量x、y满足下列条件
求z的最大值和最小值。解:作出可行域如图:当z=0时,设直线 l0:2x-y=0 当l0经过可行域上点A时,
-z 最小,即z最大。 当l0经过可行域上点C时,
-z最大,即z最小。∴ zmax=2×5-2=8 zmin=2×1-4.4= -2.4(5,2)(1,4.4)平移l0,平移l0 ,2x-y=0解线性规划问题的步骤: 2、 在线性目标函数所表示的一组平行线
中,用平移的方法找出与可行域有公
共点且纵截距最大或最小的直线; 3、 通过解方程组求出最优解; 4、 作出答案。 1、 画出线性约束条件所表示的可行域;画移求答3x+5y=25 例2:已知x、y满足 ,设z=ax+y (a>0), 若z
取得最大值时,对应点有无数个,求a 的值。xyox-4y=-3x=1CBA解:当直线 l :y =-ax+ z 与直线重合时,有无数个点,使函数值取得最大值,此时有: k l =kAC k l = -a
例3:满足线性约束条件 的可行域中共有
多少个整数解。1223314455xy0解:由题意得可行域如图: 由图知满足约束条件的
可行域中的整点为(1,1)、
(1,2)、(2,1)、(2,2)
故有四个整点可行解.
练习:
设Z=x+3y,式中变量x、y满足下列条件       ,
求z的最大值和最小值。              
                 小结:
1.线性规划问题的有关概念;
2. 用图解法解线性规划问题的一般步骤;
3. 求可行域中的整点可行解。再见再见教学设计
教学主题
?
一、教材分析
简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.?
?
二、学生分析
元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.?本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.?本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.?
?
三、教学目标
一、知识与技能?
1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;?
2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.??
二、过程与方法?
1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;?
2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.
三、情感态度与价值观?
1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;?
2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
?
四、教学环境
□√简易多媒体教学环境?? □√交互式多媒体教学环境?? □网络多媒体环境教学环境?? □移动学习? ?□其他
五、信息技术应用思路(突出三个方面:使用哪些技术?在哪些教学环节如何使用这些技术?使用这些技术的预期效果是?)200字
运用几何画板,制作课件展示在可行域内直线的运动,使得学生直观的认识。确认在何时取得最优解,学生更直观,更清楚,更简单的理解线性规划的应用。通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.。
1.多媒体展示多幅可行域即可行解的图片,以及各种情况下的变换图,动感很强,增强学生的感性认识,可激发学生兴趣和求知欲。
2.可行解的的探究,利用几何画板演示,最优解满足的条件。并通过几何画板动态演示更易理解,提高学习的积极性。
六、教学流程设计(可加行)
教学环节
(如:导入、讲授、复习、训练、实验、研讨、探究、评价、建构)
教师活动
学生活动
信息技术支持(资源、方法、手段等)
导入新课
前面我们学习了二元一次不等式Ax+By+C>0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下
(生回答)
?
[合作探究]1在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.?
例如,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?
?
设甲、乙两种产品分别生产x、y件,应如何列式?
?
由已知条件可得二元一次不等式组:
?
Ppt
讲授
如何将上述不等式组表示成平面上的区域?
?
?
?
对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P(x,y)在上述平面区域中时,所安排的生产任务x、y才有意义.
进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大??
设生产甲产品x件,乙产品y件时,工厂获得利润为z,则如何表示它们的关系?
?
则z=2x+3y.
课件几何画板
?
这样,上述问题就转化为:当x、y满足上述不等式组并且为非负整数时,z的最大值是多少?
?
?
?
新课讲授
把z=2x+3y变形为,这是斜率为,在y轴上的截距为z的直线.当z变化时可以得到什么样的图形?在上图中表示出来.
?
当z变化时可以得到一组互相平行的直线.(板演)
几何画板
研讨
由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线,这说明,截距z[]3可以由平面内的一个点的坐标唯一确定.可以看到直线与表示不等式组的区域的交点坐标满足不等式组,而且当截距最大时,z取最大值,因此,问题转化为当直线与不等式组确定的区域有公共点时,可以在区域内找一个点P,使直线经过P时截距最大.
由图可以看出,当直线经过直线x=4与直线x+2y-8=0的交点M(4,2)时,截距最大,最大值为.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元.
?
?
几何画板
知识拓展
?
?
?
再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l0:2x+y=0.?
然后,作一组与直线l0平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的变化:t=2x+y∈[3,12].?
若设t=2x+y,式中变量x、y满足下列条件求t的最大值和最小值.?
?
从变量x、y所满足的条件来看,变量x、y所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC.?
作一组与直线l0平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的变化:t=2x+y∈[3,12].
(1)
从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l0:2x+y=0上.作一组与直线l0平行的直线(或平行移动直线l0)l:2x+y=t,t∈R.?
可知,当l在l0的右上方时,直线l上的点(x,y)满足2x+y>0,即t>0.?
而且,直线l往右平移时,t随之增大(引导学生一起观察此规律).
在经过不等式组所表示的公共区域内的点且平行于l的直线中,以经过点B(5,2)的直线l2所对应的t最大,以经过点A(1,1)的直线l1所对应的t最小.所以tmax=2×5+2=12,tmin?=2×1+3=3.?
(2)
(3)
?
?
几何画板
合作探究
诸如上述问题中,不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.t=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,我们把它称为目标函数.由于t=2x+y又是关于x、y的一次解析式,所以又可叫做线性目标函数.?
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.?
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y在线性约束条件下的最大值和最小值的问题,即为线性规划问题.?
那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
?
?
例题讲解
已知x、y满足不等式组试求z=300x+900y的最大值时的整点的坐标及相应的z的最大值.
?
学生探究
几何画板展示
?
?
?
?
课堂小结
用图解法解决简单的线性规划问题的基本步骤:
1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).
2.设t=0,画出直线l0.
3.观察、分析,平移直线l0,从而找到最优解.
4.最后求得目标函数的最大值及最小值.
?
?
七、教学特色(如为个性化教学所做的调整,为自主学习所做的支持、对学生能力的培养的设计,教与学方式的创新等)200字左右
通过使用几何画板制作的课件学生在自主学习,探究合作,分析计算有很大程度的提高。
1.???? 让学生能更生动形象的观看到最优解的形成。唤醒学生的主体意识,发展学生的主体能力,让学生在参与中学会学习、学会合作、学会创新。
2.归 纳可行域和最优解过程中,多媒体展示可行域最优解形成过程,动感很强,通过直线的运动。让学生经历观察,分析发现新的知识,把学生的潜意识状态的好奇心变 为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素