2025年中考数学复习难题突破专题十讲第九讲二次函数为背景的动态问题(原卷 教师卷)

文档属性

名称 2025年中考数学复习难题突破专题十讲第九讲二次函数为背景的动态问题(原卷 教师卷)
格式 zip
文件大小 2.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2025-04-24 07:49:01

文档简介

中小学教育资源及组卷应用平台
难题突破专题九 二次函数为背景的动态问题
以函数为背景的动态问题是近年来中考的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题变为静态问题来解.
类型1二次函数动态下的线段、周长、面积最值问题、
例题:(2024 重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)经过点(﹣1,6),与y轴交于点C,与x轴交于A,B两点(A在B的左侧),连接AC,BC,tan∠CBA=4.
(1)求抛物线的表达式;
(2)点P是射线CA上方抛物线上的一动点,过点P作PE⊥x轴,垂足为E,交AC于点D.点M是线段DE上一动点,MN⊥y轴,垂足为N,点F为线段BC的中点,连接AM,NF.当线段PD长度取得最大值时,求AM+MN+NF的最小值;
(3)将该抛物线沿射线CA方向平移,使得新抛物线经过(2)中线段PD长度取得最大值时的点D,且与直线AC相交于另一点K.点Q为新抛物线上的一个动点,当∠QDK=∠ACB时,直接写出所有符合条件的点Q的坐标.
【分析】(1)由待定系数法即可求解;
(2)将点A向右平移2个单位得到点A′(﹣2,0),连接A′F交y轴于点N,过点N作NM⊥PE,连接AM,则此时AM+MN+NF=A′N+MN+NF=2+A′F最小,即可求解;
(3)∠QDK=∠ACB,则DQ∥BC,则直线DQ的表达式为:y=﹣4(x+2)+2,即可求解;当点Q(Q′)在AC上方时,同理可解.
【解答】解:(1)由抛物线的表达式知,OC=4,
∵tan∠CBA=4,则OB=1,
即点B(1,0),
由题意得:,
解得:,
则抛物线的表达式为:y=﹣x2﹣3x+4;
(2)由抛物线的表达式知,点A、B、C的坐标分别为:(﹣4,0)、(1,0)、(0,4),则点F(,2),
由点A、C的坐标得,直线AC的表达式为:y=x+4,
设点P(x,﹣x2+3x+4),则点D(x,x+4),
则PD=﹣x2+3x+4﹣x﹣4=﹣x2﹣4x,
当x=﹣2时,PD取得最大值,则点E(﹣2,0)、D(﹣2,2),则MN=2,
将点A向右平移2个单位得到点A′(﹣2,0),连接A′F交y轴于点N,过点N作NM⊥PE,连接AM,
则四边形MNA′A为平行四边形,则AM=A′N,
则此时AM+MN+NF=A′N+MN+NF=2+A′F=2+=2+为最小;
(3)将该抛物线沿射线CA方向平移,当向左平移m个单位时,则向下平移了m个单位,
则新抛物线的表达式为:y=﹣(x+m)2+3(x+m)+4﹣m,
将点D(﹣2,2)的坐标代入上式得:2=﹣(﹣2+m)2+3(﹣2+m)+4﹣m,
解得:m=2,
则新抛物线的表达式为:y=﹣(x+m)2+3(x+m)+4﹣m=﹣x2﹣7x﹣8,
由点B、C的坐标得,直线BC的表达式为:y=﹣4x+4,
当点Q在AC下方时,
∵∠QDK=∠ACB,则DQ∥BC,
则直线DQ的表达式为:y=﹣4(x+2)+2,
联立上式和新抛物线的表达式得:﹣4(x+2)+2=﹣x2﹣7x﹣8,
解得:x=﹣2(舍去)或﹣1,
即点Q(﹣1,﹣2);
当点Q(Q′)在AC上方时,
同理可得,点H′(﹣4,),
由点D、H′的坐标得,直线DH′的表达式为:y=﹣(x+2)+2,
联立上式和新抛物线的表达式得:﹣(x+2)+2+2=﹣x2﹣7x﹣8,
解得:x=﹣2(舍去)或﹣,
即点Q(﹣,);
综上,点Q的坐标为:(﹣1,﹣2)或(﹣,).
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.
同步训练:(2025·四川凉山模拟)如图,已知抛物线与轴交于和两点,与轴交于点.直线过抛物线的顶点.
(1)求抛物线的函数解析式;
(2)若直线与抛物线交于点,与直线交于点.
①当取得最大值时,求的值和的最大值;
②当是等腰三角形时,求点的坐标.
【答案】(1);(2)①当时,有最大值,最大值为;②或或
【分析】(1)利用待定系数法求解即可;
(2)①先求出,进而求出直线的解析式为,则,进一步求出,由此即可利用二次函数的性质求出答案;②设直线与x轴交于H,先证明是等腰直角三角形,得到;再分如图3-1所示,当时, 如图3-2所示,当时, 如图3-3所示,当时,三种情况利用等腰三角形的定义进行求解即可.
【详解】(1)解:∵抛物线与轴交于和两点,
∴抛物线对称轴为直线,
在中,当时,,
∴抛物线顶点P的坐标为,
设抛物线解析式为,
∴,
∴,
∴抛物线解析式为
(2)解:①∵抛物线解析式为,点C是抛物线与y轴的交点,
∴,
设直线的解析式为,
∴,
∴,
∴直线的解析式为,
∵直线与抛物线交于点,与直线交于点
∴,


∵,
∴当时,有最大值,最大值为;
②设直线与x轴交于H,
∴,,
∴,
∴是等腰直角三角形,
∴;
如图3-1所示,当时,
过点C作于G,则
∴点G为的中点,
由(2)得,
∴,
∴,
解得或(舍去),
∴;
如图3-2所示,当时,则是等腰直角三角形,
∴,即,
∴点E的纵坐标为5,
∴,
解得或(舍去),

如图3-3所示,当时,过点C作于G,
同理可证是等腰直角三角形,
∴,
∴,
∴,
∴,
解得或(舍去),
∴,,
∴,

综上所述,点E的坐标为或或
【点睛】本题主要考查了二次函数综合,勾股定理,等腰直角三角形的性质与判断,一次函数与几何综合,待定系数法求函数解析式等等,利用分类讨论的思想求解是解题的关键.
解题方法点析
解此类问题的关键在于通过三角形相似、三角形面积公式以及面积转化等方法求出所求图形的面积表达式,然后根据函数性质求最值.
类型2 二次函数与几何图形综合型动态问题
例题:(2024 雅安)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C.
(1)求二次函数的表达式;
(2)如图①,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,当线段PQ的长度最大时,求点Q的坐标;
(3)如图②,在(2)的条件下,过点Q的直线与抛物线交于点D,且∠CQD=2∠OCQ.在y轴上是否存在点E,使得△BDE为等腰三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.
【分析】(1)由待定系数法即可求解;
(2)由PQ=x﹣3﹣(x2﹣4x+3)=﹣x2+3x,即可求解;
(3)当∠EDB为直角时,则直线DE的表达式为:y=﹣(x﹣5)+8,则点E(0,),再分类求解即可.
【解答】解:(1)由题意得:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=ax2+bx+3,
则a=1,
则抛物线的表达式为:y=x2﹣4x+3;
(2)由抛物线的表达式知,点C(0,3),
由点B、C的坐标得,直线CB的表达式为:y=x﹣3,
设点P(x,x2﹣4x+3),则点Q(x,x﹣3),
则PQ=x﹣3﹣(x2﹣4x+3)=﹣x2+3x,
∵﹣1<0,
故PQ有最大值,
此时x=,则y=x2﹣4x+3=﹣,
即点Q(,﹣);
(3)存在,理由:
由点C、Q的坐标得,直线CQ的表达式为:y=﹣x﹣3,
过点Q作TQ∥y轴交x轴于点T,则∠TQA=∠QCO,
∵∠CQD=2∠OCQ,∠TQA=∠QCO,
则∠CQT=∠QQT,
即直线AQ和DQ关于直线QT对称,
则直线DQ的表达式为:y=(x﹣)﹣,
联立上式和抛物线的表达式得:x2﹣4x+3=(x﹣)﹣,
解得:x=(舍去)或5,
即点D(5,8);
设点E(0,y),由B、D、E的坐标得,BD2=68,DE2=25+(y﹣8)2,BE2=9+y2,
当DE=BD时,
则68=25+(y﹣8)2,
解得:y=8±,即点E(0,8±);
当DE=BE或BD=BE时,
同理可得:25+(y﹣8)2=9+y2或9+y2=68,
解得:y=5或±,
即点E(0,5)或(0,±);
综上,点E(0,8±)或(0,5)或(0,±).
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
同步训练:
(2024 泰安)如图,抛物线的图象经过点D(1,﹣1),与x轴交于点A,点B.
(1)求抛物线C1的表达式;
(2)将抛物线C1向右平移1个单位,再向上平移3个单位得到抛物线C2,求抛物线C2的表达式,并判断点D是否在抛物线C2上;
(3)在x轴上方的抛物线C2上,是否存在点P,使△PBD是等腰直角三角形.若存在,请求出点P的坐标;若不存在,请说明理由.
【分析】(1)将点D的坐标代入抛物线表达式,即可求解;
(2)由题意得:C2:y=(x﹣1)2+(x﹣1)﹣4+3=(x﹣)2﹣,当x=1时,y=(x﹣)2﹣=(1﹣)2﹣=﹣1,即可求解;
(3)当∠BAP为直角时,证明△DGB≌△EHD(AAS),求出点E(2,2),当x=2时,y=(x﹣)2﹣=(2﹣)2﹣=2,即点E在抛物线C2上,即点P即为点E(2,2);当∠DBP为直角时,同理可解;当∠HPD为直角时,如图3,同理可得点E(0,1),即可求解.
【解答】解:(1)将点D的坐标代入抛物线表达式得:﹣1=a+﹣4,
解得:a=,
则抛物线的表达式为:y=x2+x﹣4;
(2)由题意得:C2:y=(x﹣1)2+(x﹣1)﹣4+3=(x﹣)2﹣,
当x=1时,y=(x﹣)2﹣=(1﹣)2﹣=﹣1,
故点D在抛物线C2上;
(3)存在,理由:
当∠BAP为直角时,
如图1,过点D作DE⊥BD且DE=BE,则△BDE为等腰直角三角形,
∵∠BDG+∠EDH=90°,∠EDH+∠DEH=90°,
∴∠BDG=∠DEH,
∵∠DGB=∠EHD=90°,
∴△DGB≌△EHD(AAS),
则DH=BG=1,EH=GD=1+2=3,
则点E(2,2),
当x=2时,y=(x﹣)2﹣=(2﹣)2﹣=2,
即点E在抛物线C2上,
即点P即为点E(2,2);
当∠DBP为直角时,如图2,
同理可得:△BGE≌△DHB(AAS),
则DH=3=BG,BH=1=GE,
则点E(﹣1,3),
当x=﹣1时,y=(x﹣)2﹣=(﹣1﹣)2﹣=3,
即点E在抛物线C2上,
即点P即为点E(﹣1,3);
当∠HPD为直角时,如图3,
设点E(x,y),
同理可得:△EHB≌△DGE(AAS),
则EH=x+2=GD=y+1且BH=y=GE=1﹣x,
解得:x=0且y=1,即点E(0,1),
当x=0时,y=(x﹣)2﹣=(0﹣)2﹣≠1,
即点E不在抛物线C2上;
综上,点P的坐标为:(2,2)或(﹣1,3).
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
专 题 训 练
1. (2024 甘肃)如图1,抛物线y=a(x﹣h)2+k交x轴于O,A(4,0)两点,顶点为B(2,2),点C为OB的中点.
(1)求抛物线y=a(x﹣h)2+k的表达式;
(2)过点C作CH⊥OA,垂足为H,交抛物线于点E.求线段CE的长.
(3)点D为线段OA上一动点(O点除外),在OC右侧作平行四边形OCFD.
①如图2,当点F落在抛物线上时,求点F的坐标;
②如图3,连接BD,BF,求BD+BF的最小值.
【分析】(1)由待定系数法即可求解;
(2)由中点坐标公式得点C(1,),即可求解;
(3)①当y=时,y=﹣(x﹣2)2+2=,则x=2+(不合题意的值已舍去),即可求解;
②过点B作直线l⊥y轴,作点F关于直线l的对称点F′(m+1,3),连接DF′,则BD+BF=BD+BF′≥DF′,当D、B、F′共线时,BD+BF=DF′为最小,即可求解.
【解答】解:(1)由题意得:y=a(x﹣2)2+2,
将点A的坐标代入上式得:0=a×(4﹣2)2+2,
解得:a=﹣,
抛物线y=a(x﹣h)2+k的表达式为y=﹣x2+2x;
(2)由(1)知,y=﹣(x﹣2)2+2,
由中点坐标公式得点C(1,),
当x=1时,y=﹣(x﹣2)2+2=,
则CE=﹣=;
(3)①由(2)知,C(1,),
当y=时,y=﹣(x﹣2)2+2=,
则x=2+(不合题意的值已舍去),
即点F(2+,);
②设点D(m,0),则点F(m+1,),
过点B作直线l⊥y轴,作点F关于直线l的对称点F′(m+1,3),连接DF′,
则BD+BF=BD+BF′≥DF′,当D、B、F′共线时,BD+BF=DF′为最小,
由定点F′、D的坐标得,直线DF′的表达式为:y=3(x﹣m),
将点B的坐标代入上式得:2=3(2﹣m),
解得:m=,
则点F′(,3),点D(,0),
则BD+BF最小值为:DF′==2.
【点评】本题为二次函数综合运用,涉及到点的对称性、平行四边形的性质等,确定BD+BF=DF′为最小是解题的关键.
2. (2024 烟台)如图,抛物线与x轴交于A,B两点,与y轴交于点C,OC=OA,AB=4,对称轴为直线l1:x=﹣1.将抛物线y1绕点O旋转180°后得到新抛物线y2,抛物线y2与y轴交于点D,顶点为E,对称轴为直线l2.
(1)分别求抛物线y1和y2的表达式;
(2)如图1,点F的坐标为(﹣6,0),动点M在直线l1上,过点M作MN∥x轴与直线l2交于点N,连接FM,DN,求FM+MN+DN的最小值;
(3)如图2,点H的坐标为(0,﹣2),动点P在抛物线y2上,试探究是否存在点P,使∠PEH=2∠DHE?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【分析】(1)由待定系数法即可求解;
(2)证明四边形FF′NM平行四边形,则FM+MN+DN=F′N+ND′+MN=F′D′+2=+2=3+2为最小;
(3)当点P(P′)在BE的右侧时,∠PEH=2∠DHE,则EP′和HE关对称轴l2对称,求出直线EP′的表达式为:y=2(x﹣1)﹣4,即可求解;当点P在BE的左侧时,由NH=NE,求出N(0,﹣),即可求解.
【解答】解:(1)设点A、B的坐标分别为:(t,0)、(t+4,0),
则x=﹣1=(t+t+4),
解得t=﹣3,
即点A、B的坐标分别为:(﹣3,0)、(1,0),
∵OC=OA,则点C(0,3),
则抛物线y1得表达式为:y1=a(x+3)(x﹣1)=a(x2+2x﹣3),
则﹣3a=3,则a=﹣1,
则y1=﹣x2﹣2x+3;
根据图形的对称性,y2=x2﹣2x﹣3;
(2)作点D关于l2的对称点D′(2,﹣3),将点F向右平移2个单位(MN=2),连接D′F′交直线l2于点N,过点N作NM⊥l1交于点M,连接FM,
∵F′F∥MN,FF′=MN,则四边形FF′NM平行四边形,则FM=F′N,
则FM+MN+DN=F′N+ND′+MN=F′D′+2=+2=3+2为最小;
(3)由抛物线y2的表达式知,点D(0,﹣3)、点E(1,﹣4),
由点H、E的坐标得,直线HE的表达式为:y=﹣2x﹣2,
当点P(P′)在BE的右侧时,
∵∠PEH=2∠DHE,则EP′和HE关对称轴l2对称,
则直线EP′的表达式为:y=2(x﹣1)﹣4,
联立上式和抛物线y2得表达式得:2(x﹣1)﹣4=x2﹣2x﹣3,
解得:x=1(舍去)或3,
即点P′(3,0);
当点P在BE的左侧时,见如图右侧放大图,设直线PE交y轴于点N,
∵∠PEH=2∠DHE,
过点E(1,﹣4)作∠PEH的角平分线EK交HD于点K,
作HE的中垂线JK,交HD于点J,交HE于点L,过点E作EW⊥HD交于点W
则∠JHL=∠JEH=∠EHJ=α,
由点H、E的坐标得,直线HE的表达式为:y=﹣2x﹣2,
则点L(,﹣3),
直线JL的表达式为:y=(x﹣)﹣3=x﹣,
则点J(0,﹣),则HJ=JF=,
∵∠JHL=∠JEH=∠EHJ=α,∠EKJ=∠HKF,
∴△EKJ∽△HKE,
则=,
设KJ=m,则KE=4m,
则点K(0,﹣﹣m),
在Rt△KEW中,KW2+WE2=KE2,
即(﹣﹣m+4)2+1=4m2,
解得:m=,
则点K(0,﹣),
由点K、E的坐标得,直线KE的表达式为:y=﹣x﹣,
联立上式和抛物线的表达式得:x2﹣2x﹣3=﹣x﹣,
解得:x=,
则点P(,﹣);
综上,点P的坐标为:(3,0)或(,﹣).
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.
3. (2024 广元)在平面直角坐标系xOy中,已知抛物线F:y=﹣x2+bx+c经过点A(﹣3,﹣1),与y轴交于点B(0,2).
(1)求抛物线的函数表达式;
(2)在直线AB上方抛物线上有一动点C,连接OC交AB于点D,求的最大值及此时点C的坐标;
(3)作抛物线F关于直线y=﹣1上一点的对称图象F′,抛物线F与F′只有一个公共点E(点E在y轴右侧),G为直线AB上一点,H为抛物线F′对称轴上一点,若以B,E,G,H为顶点的四边形是平行四边形,求G点坐标.
【分析】(1)用待定系数法求函数的解析式即可;
(2)过点C作x轴的垂线交AB于点M,则CM∥y轴,可知△CDM∽△ODB,由此得到,设C(t,﹣t2﹣2t+2),则M(t,t+2),所以CM=﹣(t+)2+,当t=﹣时,CM有最大值,此时 的最大值为,此时点C的坐标为(﹣,);
(3)由中心对称可知,抛物线F与F′的公共点E为直线y=﹣1与抛物线F的右交点,求出E(1,﹣1),抛物线F'的顶点坐标为(3,﹣5),设G(m,m+2),当BE为平行四边形的对角线时,G(﹣2,0);当BG为平行四边形对角线时,G(4,6);当BH为平行四边形的对角线时,G(2,4).
【解答】解:(1)将A(﹣3,﹣1),B(0,2)代入 y=﹣x2+bx+c,
得:,
解得:,
∴抛物线的函数表达式为y=﹣x2﹣2x+2;
(2)如图1,过点C作x轴的垂线交AB于点M,则CM∥y轴,
∴△CDM∽△ODB,
∴,
设AB的解析式为y=mx+n,
把A(﹣3,﹣1),B(0,2)代入解析式得 ,
解得:,
∴直线AB的解析式为y=x+2,
设C(t,﹣t2﹣2t+2),则M(t,t+2),
∴CM=﹣t2﹣2t+2﹣t﹣2=﹣t2﹣3t=﹣(t+)2+,
∵﹣3<t<0,
∴当t=﹣时,CM有最大值,此时 的最大值为,
此时点C的坐标为(﹣,);
(3)由中心对称可知,抛物线F与F′的公共点E为直线y=﹣1与抛物线F的右交点,
当x2﹣2x+2=1时,解得x=﹣3(舍)或x=1,
∴E(1,﹣1),
∵抛物线F:y=﹣x2﹣2x+2 的顶点坐标为(﹣1,3),
∴抛物线F'的顶点坐标为(3,﹣5),
设G(m,m+2),
当BE为平行四边形的对角线时,x+3=1,解得x=﹣2,
∴G(﹣2,0);
当BG为平行四边形对角线时,x=3+1=4,
∴G(4,6);
当BH为平行四边形的对角线时,x+1=3时,解得x=2,
∴G(2,4);
综上所述:G点坐标(﹣2,0)或(4,6)或(2,4).
【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行线的性质,三角形相似的判定及性质,平行四边形的性质是解题的关键.
16.(2024 广州)已知抛物线G:y=ax2﹣6ax﹣a3+2a2+1(a>0)过点A(x1,2)和点B(x2,2),直线l:y=m2x+n过点C(3,1),交线段AB于点D,记△CDA的周长为C1,△CDB的周长为C2,且C1=C2+2.
(1)求抛物线G的对称轴;
(2)求m的值;
(3)直线l绕点C以每秒3°的速度顺时针旋转t秒后(0≤t<45)得到直线l′,当l′∥AB时,直线l′交抛物线G于E,F两点.
①求t的值;
②设△AEF的面积为S,若对于任意的a>0,均有S≥k成立,求k的最大值及此时抛物线G的解析式.
【分析】(1)由抛物线对称轴公式即可求解;
(2)由C1=C2+2,即AC+CD+AD=BC+CD+BD+2,得到2xD=xA+xB+2,即可求解;
(3)①当m=±1时,一次函数的表达式为:y=m2(x﹣3)+1=x﹣2,该直线和x轴的夹角为45°,即可求解;
②由S=×EF×(yA﹣yE)=EF,而EF2=(m﹣n)2=(m+n)2﹣4mn=4(a2﹣2a+9),即可求解.
【解答】解:(1)由抛物线的表达式知,其对称轴为直线x=﹣=﹣=3;
(2)直线l:y=m2x+n过点C(3,1),则该直线的表达式为:y=m2(x﹣3)+1,
当y=2时,2=m2(x﹣3)+1,
则xD=+3,
∵C1=C2+2,即AC+CD+AD=BC+CD+BD+2,
其中,AC=BC,上式变为:AD=BD+2,
即2xD=xA+xB+2,
而函数的对称轴为直线x=3,由函数的对称性知,xA+xB=2×3=6,
即2xD=xA+xB+2=8,
则xD=4=+3,
解得:m=±1;
(3)①当m=±1时,一次函数的表达式为:y=m2(x﹣3)+1=x﹣2,
该直线和x轴的夹角为45°,
则t=45÷3=15(秒);
②由①知,l为:y=1,如下图:
则S=×EF×(yA﹣yE)=EF,
联立直线l和抛物线的表达式得:ax2﹣6ax﹣a3+2a2+1=1,
即x2﹣6x﹣a2+2a=0,
设点E、F的横坐标为m,n,
则m+n=6,nm=﹣a2+2a,
则EF2=(m﹣n)2=(m+n)2﹣4mn=4(a2﹣2a+9),
则S=EF==≥2,
当a=1时,等号成立,
即k的最大值为:2,a=1,
则抛物线的表达式为:y=x2﹣6x+2.
【点评】本题考查的是二次函数综合运用,涉及到二次函数的图象和性质、周长的确定、点的对称性、面积的计算等,灵活运用二次函数的性质是解题的关键.
4. (2024 湖北)如图,二次函数y=﹣x2+bx+3交x轴于A(﹣1,0)和B,交y轴于C.
(1)求b的值.
(2)如图,M是第一象限抛物线上的点,满足∠MAB=∠ACO,求M点的横坐标.
(3)将二次函数沿水平方向平移,新的图象记为L,L与y轴交于点D,记DC=d,记L顶点横坐标为n.
①求d与n的函数解析式.
②记L与x轴围成的图象为U,U与△ABC重合部分(不计边界)记为W,若d随n增加而增加,且W内恰有2个横坐标与纵坐标均为整数的点,直接写出n的取值范围.
【分析】(1)待定系数法求解即可;
(2)设M(m,﹣m2+2m+3),作MN⊥x轴于点N,构造直角三角形,利用锐角三角函数或者相似建立关于m的方程求解即可;
(3)①由二次函数平移可得出图象L的解析式为y=﹣(x﹣n)2+4=﹣x2+2nx﹣n2+4,从而得到CD=d=|﹣n2+4﹣3|=|﹣n2+1|,再分类讨论去绝对值即可;
②根据题干条件得出整数点(0,1),(0,2),(1,1),再分别两两进行分类讨论,建立二次函数不等式即可解决.
【解答】解:(1)∵二次函数y=﹣x2+bx+3与x轴交于(﹣1,0),
∴0=﹣1﹣b+3,解得b=2.
(2)∵b=2,
∴二次函数表达式为:y=﹣x2+2x+3=﹣(x﹣1)2+4,
令y=0,解得x=﹣1或3,
令x=0得y=3,
∴A(﹣1.0),B(3,0),C(0,3),作MN⊥x轴于点N,
设M(m,﹣m2+2m+3),
如图,
∵∠MAB=∠ACO,
∴tan∠MAB=tan∠ACO,即,
∴,
解得m=或﹣1(舍去),
综上:m=.
(3)①∵将二次函数沿水平方向平移,
∴纵坐标不变是4,
∴图象L的解析式为y=﹣(x﹣n)2+4=﹣x2+2nx﹣n2+4,
∴D(0,﹣n2+4),
∴CD=d=|﹣n2+4﹣3|=|﹣n2+1|,
∴d=,
②由①得d=,则函数图象如图,
∵d随着n增加而增加,
∴﹣1≤n≤0或n≥1,△ABC中含(0,1),(0,2),(1,1)三个整点(不含边界),
当W内恰有2个整数点(0,1),(0,2)时,
当x=0时,yL>2,当x=1时,yL≤1,
∴,
∴﹣<n<,n≥1+或n≤1﹣,
∴﹣<n<1﹣,
∵﹣1≤n<0 或n≥1,
∴﹣1≤n≤1﹣;
当W内恰有2个整数点(0,1),(1,1)时,
当x=0时,1<yL≤2,当x=1时,yL>1,
∴,
∴﹣<n≤﹣或≤n<,1﹣<n<1+,
∴,
∵﹣1≤n<0 或n≥1,
∴;
当W内恰有2个整数点(0,2),(1,1)时,此种情况不存在,舍去.
综上,n的取值范围为﹣1≤n≤1﹣或.
【点评】本题主要考查了二次函数综合,包括用待定系数法求二次函数表达式及二次函数与线段交点的问题,也考查了二次函数与不等式,相似三角形的判定和性质,熟练掌握二次函数的图象和性质以及数形结合法是解题关键.
5. (2024 凉山州)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;
(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【分析】(1)把B(3,m)代入y=x+2求出B(3,5),再用待定系数法可得抛物线的解析式为y=﹣x2+2x+8;
(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),由PE=2DE,可得﹣t2+2t+8﹣(t+2)=2(t+2),解出t的值可得P的坐标为(1,9);
(3)过M作MK∥y轴交直线AB于K,求出C(4,0),知AC=6,故S△ABC=×6×5=15,设M(m,﹣m2+2m+8),则K(m,m+2),可得MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,S△ABM=MK |xB﹣xA|=|﹣m2+m+6|,根据△ABM的面积等于△ABC面积的一半,有|﹣m2+m+6|=×15,可得|﹣m2+m+6|=3,即﹣m2+m+6=3或﹣m2+m+6=﹣3,解出m的值可得答案.
【解答】解:(1)把B(3,m)代入y=x+2得:m=3+2=5,
∴B(3,5),
把A(﹣2,0),B(3,5)代入y=﹣x2+bx+c得:

解得,
∴抛物线的解析式为y=﹣x2+2x+8;
(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),
∵PE=2DE,
∴﹣t2+2t+8﹣(t+2)=2(t+2),
解得t=1或t=﹣2(此时P不在直线AB上方,舍去);
∴P的坐标为(1,9);
(3)抛物线上存在点M,使△ABM的面积等于△ABC面积的一半,理由如下:
过M作MK∥y轴交直线AB于K,如图:
在y=﹣x2+2x+8中,令y=0得0=﹣x2+2x+8,
解得x=﹣2或x=4,
∴A(﹣2,0),C(4,0),
∴AC=6,
∵B(3,5),
∴S△ABC=×6×5=15,
设M(m,﹣m2+2m+8),则K(m,m+2),
∴MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,
∴S△ABM=MK |xB﹣xA|=|﹣m2+m+6|×5=|﹣m2+m+6|,
∵△ABM的面积等于△ABC面积的一半,
∴|﹣m2+m+6|=×15,
∴|﹣m2+m+6|=3,
∴﹣m2+m+6=3或﹣m2+m+6=﹣3,
解得m=或m=,
∴M的坐标为(,)或(,)或(,)或(,).
【点评】本题考查二次函数综合应用,涉及待定系数法,三角形面积等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
难题突破专题九 二次函数为背景的动态问题
以函数为背景的动态问题是近年来中考的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题变为静态问题来解.
类型1二次函数动态下的线段、周长、面积最值问题、
例题:(2024 重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)经过点(﹣1,6),与y轴交于点C,与x轴交于A,B两点(A在B的左侧),连接AC,BC,tan∠CBA=4.
(1)求抛物线的表达式;
(2)点P是射线CA上方抛物线上的一动点,过点P作PE⊥x轴,垂足为E,交AC于点D.点M是线段DE上一动点,MN⊥y轴,垂足为N,点F为线段BC的中点,连接AM,NF.当线段PD长度取得最大值时,求AM+MN+NF的最小值;
(3)将该抛物线沿射线CA方向平移,使得新抛物线经过(2)中线段PD长度取得最大值时的点D,且与直线AC相交于另一点K.点Q为新抛物线上的一个动点,当∠QDK=∠ACB时,直接写出所有符合条件的点Q的坐标.
同步训练:(2025·四川凉山模拟)如图,已知抛物线与轴交于和两点,与轴交于点.直线过抛物线的顶点.
(1)求抛物线的函数解析式;
(2)若直线与抛物线交于点,与直线交于点.
①当取得最大值时,求的值和的最大值;
②当是等腰三角形时,求点的坐标.
类型2 二次函数与几何图形综合型动态问题
例题:(2024 雅安)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C.
(1)求二次函数的表达式;
(2)如图①,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,当线段PQ的长度最大时,求点Q的坐标;
(3)如图②,在(2)的条件下,过点Q的直线与抛物线交于点D,且∠CQD=2∠OCQ.在y轴上是否存在点E,使得△BDE为等腰三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.
同步训练:
(2024 泰安)如图,抛物线的图象经过点D(1,﹣1),与x轴交于点A,点B.
(1)求抛物线C1的表达式;
(2)将抛物线C1向右平移1个单位,再向上平移3个单位得到抛物线C2,求抛物线C2的表达式,并判断点D是否在抛物线C2上;
(3)在x轴上方的抛物线C2上,是否存在点P,使△PBD是等腰直角三角形.若存在,请求出点P的坐标;若不存在,请说明理由.
专 题 训 练
1. (2024 甘肃)如图1,抛物线y=a(x﹣h)2+k交x轴于O,A(4,0)两点,顶点为B(2,2),点C为OB的中点.
(1)求抛物线y=a(x﹣h)2+k的表达式;
(2)过点C作CH⊥OA,垂足为H,交抛物线于点E.求线段CE的长.
(3)点D为线段OA上一动点(O点除外),在OC右侧作平行四边形OCFD.
①如图2,当点F落在抛物线上时,求点F的坐标;
②如图3,连接BD,BF,求BD+BF的最小值.
2. (2024 烟台)如图,抛物线与x轴交于A,B两点,与y轴交于点C,OC=OA,AB=4,对称轴为直线l1:x=﹣1.将抛物线y1绕点O旋转180°后得到新抛物线y2,抛物线y2与y轴交于点D,顶点为E,对称轴为直线l2.
(1)分别求抛物线y1和y2的表达式;
(2)如图1,点F的坐标为(﹣6,0),动点M在直线l1上,过点M作MN∥x轴与直线l2交于点N,连接FM,DN,求FM+MN+DN的最小值;
(3)如图2,点H的坐标为(0,﹣2),动点P在抛物线y2上,试探究是否存在点P,使∠PEH=2∠DHE?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
3. (2024 广元)在平面直角坐标系xOy中,已知抛物线F:y=﹣x2+bx+c经过点A(﹣3,﹣1),与y轴交于点B(0,2).
(1)求抛物线的函数表达式;
(2)在直线AB上方抛物线上有一动点C,连接OC交AB于点D,求的最大值及此时点C的坐标;
(3)作抛物线F关于直线y=﹣1上一点的对称图象F′,抛物线F与F′只有一个公共点E(点E在y轴右侧),G为直线AB上一点,H为抛物线F′对称轴上一点,若以B,E,G,H为顶点的四边形是平行四边形,求G点坐标.
4.(2024 广州)已知抛物线G:y=ax2﹣6ax﹣a3+2a2+1(a>0)过点A(x1,2)和点B(x2,2),直线l:y=m2x+n过点C(3,1),交线段AB于点D,记△CDA的周长为C1,△CDB的周长为C2,且C1=C2+2.
(1)求抛物线G的对称轴;
(2)求m的值;
(3)直线l绕点C以每秒3°的速度顺时针旋转t秒后(0≤t<45)得到直线l′,当l′∥AB时,直线l′交抛物线G于E,F两点.
①求t的值;
②设△AEF的面积为S,若对于任意的a>0,均有S≥k成立,求k的最大值及此时抛物线G的解析式.
5. (2024 湖北)如图,二次函数y=﹣x2+bx+3交x轴于A(﹣1,0)和B,交y轴于C.
(1)求b的值.
(2)如图,M是第一象限抛物线上的点,满足∠MAB=∠ACO,求M点的横坐标.
(3)将二次函数沿水平方向平移,新的图象记为L,L与y轴交于点D,记DC=d,记L顶点横坐标为n.
①求d与n的函数解析式.
②记L与x轴围成的图象为U,U与△ABC重合部分(不计边界)记为W,若d随n增加而增加,且W内恰有2个横坐标与纵坐标均为整数的点,直接写出n的取值范围.
6. (2024 凉山州)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;
(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录