(共30张PPT)
26.1.1 反比例函数
第二十六章 反比例函数
人教版数学九年级下册
授课教师:********
班 级:********
时 间:********
学习目标
理解并掌握反比例函数的概念.
2. 能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式.
3. 能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.
互逆命题、互逆定理教案
一、教学目标
知识与技能目标
理解互逆命题、互逆定理的概念,能准确说出一个命题的逆命题。
会判断一个命题及它的逆命题的真假性,掌握证明命题真假的方法。
过程与方法目标
通过对命题、逆命题的分析,培养学生的逻辑思维能力和语言表达能力。
经历探究互逆定理的过程,体会从特殊到一般的数学思想。
情感态度与价值观目标
培养学生积极参与数学活动,敢于质疑、勇于探索的精神。
让学生感受数学知识的严谨性和逻辑性,体会数学的应用价值。
二、教学重难点
重点
互逆命题、互逆定理的概念及命题真假的判断。
能正确写出一个命题的逆命题。
难点
判断一个命题的逆命题的真假性,理解原命题为真,其逆命题不一定为真。
用逻辑推理的方法证明命题的真假。
三、教学方法
讲授法、讨论法、练习法相结合
四、教学过程
(一)导入新课(5 分钟)
展示一些简单的命题,如 “如果两个角是对顶角,那么这两个角相等” ,“如果 a=b,那么 a =b ”。引导学生分析这些命题的题设和结论。
提问:能否交换这些命题的题设和结论,得到新的命题?新命题是否成立?从而引出本节课的课题 —— 互逆命题、互逆定理。
(二)讲授新课(25 分钟)
互逆命题
给出互逆命题的定义:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
举例说明:如原命题 “如果两个角是直角,那么这两个角相等”,它的逆命题是 “如果两个角相等,那么这两个角是直角” 。让学生进一步理解互逆命题的概念。
组织学生进行小组讨论,每个小组写出 3 - 5 个命题,并交换写出它们的逆命题。
命题真假的判断
引导学生思考如何判断一个命题的真假。对于真命题,需要通过推理证明;对于假命题,只需举一个反例即可。
以刚才的命题为例,分析原命题和逆命题的真假性。如 “如果两个角是直角,那么这两个角相等” 是真命题,而它的逆命题 “如果两个角相等,那么这两个角是直角” 是假命题,因为两个相等的角不一定是直角,还可能是锐角或钝角等。
让学生自己判断之前小组讨论中写出的命题及其逆命题的真假性,并在小组内交流。
互逆定理
给出互逆定理的定义:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理。
举例说明:如 “两直线平行,同位角相等” 和 “同位角相等,两直线平行” 是互逆定理。
强调:并不是所有的定理都有逆定理,只有当定理的逆命题为真命题时,才有逆定理。
(三)例题讲解(15 分钟)
例 1:写出下列命题的逆命题,并判断其真假。
(1)如果 a = 0,那么 ab = 0。
(2)全等三角形的对应角相等。
(3)等腰三角形的两个底角相等。
分析:
(1)逆命题为 “如果 ab = 0,那么 a = 0”,这是假命题,因为当 b = 0 时,ab = 0,a 不一定为 0。
(2)逆命题为 “对应角相等的三角形是全等三角形”,这是假命题,因为对应角相等的三角形不一定全等,可能是相似三角形。
(3)逆命题为 “有两个角相等的三角形是等腰三角形”,这是真命题,它是等腰三角形的判定定理。
例 2:证明命题 “如果一个三角形的两个角相等,那么这两个角所对的边也相等” 是真命题。
分析:引导学生画出图形,写出已知、求证,然后进行证明。
已知:在△ABC 中,∠B = ∠C。
求证:AB = AC。
证明:作∠BAC 的平分线 AD,交 BC 于点 D。
因为 AD 平分∠BAC,所以∠BAD = ∠CAD。
在△ABD 和△ACD 中,
∠B = ∠C,
∠BAD = ∠CAD,
AD = AD(公共边),
所以△ABD≌△ACD(AAS)。
所以 AB = AC。
(四)课堂练习(10 分钟)
写出下列命题的逆命题,并判断真假。
(1)如果 x = 2,那么 x = 4。
(2)直角三角形的两个锐角互余。
(3)对顶角相等。
判断下列说法是否正确:
(1)每个命题都有逆命题。
(2)每个定理都有逆定理。
(3)真命题的逆命题一定是真命题。
(4)假命题的逆命题一定是假命题。
(五)课堂小结(5 分钟)
与学生一起回顾互逆命题、互逆定理的概念,以及如何判断命题的真假。
强调:原命题为真,逆命题不一定为真;原命题为假,逆命题也不一定为假。
(六)布置作业(5 分钟)
课本课后习题,要求学生认真书写解题过程,判断命题真假时要说明理由。
拓展作业:收集生活中或数学学习中至少两个互逆命题,并分析它们的真假性。
五、教学反思
在教学过程中,要注重引导学生积极思考、主动参与,通过实际例子帮助学生理解抽象的概念。对于学生在判断命题真假和写逆命题时容易出现的错误,要及时给予纠正和指导。在今后的教学中,可以进一步加强练习,提高学生的逻辑思维能力和解决问题的能力。
5
课堂检测
4
新知讲解
6
变式训练
7
中考考法
8
小结梳理
9
布置作业
学习目录
1
复习引入
2
新知讲解
3
典例讲解
当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?
导入新知
下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.
(1) 京沪线铁路全程为1463 km,某次列车的平均速度v (单位:km/h) 随此次列车的全程运行时间t (单位:h) 的变化而变化;
探究新知
知识点 1
反比例函数的定义
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪,草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;
(3) 已知北京市的总面积为1.68×104 km2 ,人均占有面积 S (单位:km2/人) 随全市总人口 n (单位:人) 的变化而变化.
探究新知
S=
【观察】这三个函数解析式有什么共同点?
一般地,形如 (k为常数,k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.
都是 的形式,其中k是非零常数.
传授新知
探究新知
反比例函数:形如 (k为常数,且k≠0)
【思考】
1.自变量x的取值范围是什么?
探究新知
因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.
2.在实际问题中自变量x的取值范围是什么?
要根据具体情况来确定.
例如,在前面得到的第二个解析式 ,x的取值范围是 x>0,且当 x 取每一个确定的值时,y 都有唯一确定的值与其对应.
反比例函数的三种表达方式:(注意 k ≠ 0)
探究新知
3.形如 的式子是反比例函数吗?
式子 呢?
巩固练习
下列函数中哪些是反比例函数,并指出相应k的值?
① y =3x-1 ② y =2x2 ③ ④
⑤ y =3x-1 ⑥ ⑦
不是
是,k = 1
不是
不是
是,k = 3
是,
是,
巩固练习
在下列函数中,y 是 x 的反比例函数的是( )
A. B.
C. xy =5 D.
C
已知函数 是反比例函数,求 m 的值.
所以
2m2 + 3m-3=-1
2m2 + m-1≠0
解得 m =-2.
解:因为 是反比例函数,
探究新知
考点 1
利用反比例函数的定义求字母的值
归纳总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中 x 的次数为-1,且系数不等于0.
(1)当m =_____时,函数 是反比例函数.
(2)已知函数 是反比例函数,则 m =_______.
巩固练习
1.5
6
(3)若函数 是反比例函数,则m的
值为______.
2
已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
分析:因为 y 是 x 的反比例函数,所以设 .把 x=2 和 y=6 代入上式,就可求出常数 k 的值.
解:(1)设 . 因为当 x=2时,y=6,所以有
解得 k =12.
因此
探究新知
考点 2
利用待定系数法求反比例函数的解析式
(2) 当 x=4 时,求 y 的值.
(2)把 x=4 代入 ,得
探究新知
用待定系数法求反比例函数解析式的一般步骤是:
(1)设,即设所求的反比例函数解析式为 (k≠0).
(2)代,即将已知条件中对应的 x、y 值代入 中得到关
于k的方程.
(3)解,即解方程,求出 k 的值.
(4)定,即将 k 值代入 中,确定函数解析式.
归纳总结
已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x = 7 时,求 y 的值.
解:(1) 设 ,因为当 x = 3 时,y =4 ,
所以有 ,解得 k =16,因此 .
(2) 当 x = 7 时,
巩固练习
人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100km/h 时视野的度数.
当 v=100 时,f =40.
所以当车速为100km/h 时,视野为40度.
解:设 . 由题意知,当 v =50时,f =80,
解得 k =4000.
因此
所以
知识点 2
建立反比例函数的模型解答问题
探究新知
如图,已知菱形 ABCD 的面积为180,设它的两条对角线 AC,BD的长分别为x,y. 写出变量 y与 x 之间的关系式,并指出它是什么函数.
A
B
C
D
解:因为菱形的面积等于两条对角线长
乘积的一半,
所以
所以变量 y与 x 之间的关系式为 ,
它是反比例函数.
巩固练习
B
返回
1.
下列函数不是反比例函数的是( )
返回
A
2.
已知函数y=(m+2)xm -5是反比例函数,则m的值是( )
A.2 B.±2 C.±4 D.±6
C
返回
3.
下列成反比例关系的是( )
A.正方形的周长C与边长a的关系
B.圆的面积S与半径r的关系
C.当路程s一定时,时间t与速度v的关系
D.直角三角形两锐角∠A与∠B的关系
4.
返回
180
5.
返回
k≥0且k≠1
6.
写出下列问题中两个变量之间的函数解析式,并判断其是不是反比例函数.
(1)底边长为3 cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;
(2)一艘轮船从相距200 km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;
(3)在检修100 m长的管道时,每天能完成10 m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.
y=100-10x,不是反比例函数.
返回
7.
[2024亳州月考]已知函数y=(m2-m)xm -3m+1是反比例函数,则( )
A. m≠0
B.m≠0且m≠1
C. m=2
D.m=1或2
【点拨】
【答案】C
由题意知m2-3m+1=-1,整理,得m2-3m+2=0,解得m1=1,m2=2.
当m=1时,m2-m=0,不合题意,舍去.
∴m=2.
返回
8.
建立反比例函数模型
用待定系数法求反比例函数解析式
反比例函数:定义/三种表达方式
反比例函数
课堂小结
谢谢观看!