(共30张PPT)
26.1.2 反比例函数的图象
和性质(第1课时)
第二十六章 反比例函数
人教版数学九年级下册
授课教师:********
班 级:********
时 间:********
学习目标
1. 会用描点法画出反比例函数的图象 .
2. 结合图象分析并掌握反比例函数的性质.
3. 体会函数的三种表示方法,领会数形结合的思想方法.
互逆命题、互逆定理教案
一、教学目标
知识与技能目标
理解互逆命题、互逆定理的概念,能准确说出一个命题的逆命题。
会判断一个命题及它的逆命题的真假性,掌握证明命题真假的方法。
过程与方法目标
通过对命题、逆命题的分析,培养学生的逻辑思维能力和语言表达能力。
经历探究互逆定理的过程,体会从特殊到一般的数学思想。
情感态度与价值观目标
培养学生积极参与数学活动,敢于质疑、勇于探索的精神。
让学生感受数学知识的严谨性和逻辑性,体会数学的应用价值。
二、教学重难点
重点
互逆命题、互逆定理的概念及命题真假的判断。
能正确写出一个命题的逆命题。
难点
判断一个命题的逆命题的真假性,理解原命题为真,其逆命题不一定为真。
用逻辑推理的方法证明命题的真假。
三、教学方法
讲授法、讨论法、练习法相结合
四、教学过程
(一)导入新课(5 分钟)
展示一些简单的命题,如 “如果两个角是对顶角,那么这两个角相等” ,“如果 a=b,那么 a =b ”。引导学生分析这些命题的题设和结论。
提问:能否交换这些命题的题设和结论,得到新的命题?新命题是否成立?从而引出本节课的课题 —— 互逆命题、互逆定理。
(二)讲授新课(25 分钟)
互逆命题
给出互逆命题的定义:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
举例说明:如原命题 “如果两个角是直角,那么这两个角相等”,它的逆命题是 “如果两个角相等,那么这两个角是直角” 。让学生进一步理解互逆命题的概念。
组织学生进行小组讨论,每个小组写出 3 - 5 个命题,并交换写出它们的逆命题。
命题真假的判断
引导学生思考如何判断一个命题的真假。对于真命题,需要通过推理证明;对于假命题,只需举一个反例即可。
以刚才的命题为例,分析原命题和逆命题的真假性。如 “如果两个角是直角,那么这两个角相等” 是真命题,而它的逆命题 “如果两个角相等,那么这两个角是直角” 是假命题,因为两个相等的角不一定是直角,还可能是锐角或钝角等。
让学生自己判断之前小组讨论中写出的命题及其逆命题的真假性,并在小组内交流。
互逆定理
给出互逆定理的定义:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理。
举例说明:如 “两直线平行,同位角相等” 和 “同位角相等,两直线平行” 是互逆定理。
强调:并不是所有的定理都有逆定理,只有当定理的逆命题为真命题时,才有逆定理。
(三)例题讲解(15 分钟)
例 1:写出下列命题的逆命题,并判断其真假。
(1)如果 a = 0,那么 ab = 0。
(2)全等三角形的对应角相等。
(3)等腰三角形的两个底角相等。
分析:
(1)逆命题为 “如果 ab = 0,那么 a = 0”,这是假命题,因为当 b = 0 时,ab = 0,a 不一定为 0。
(2)逆命题为 “对应角相等的三角形是全等三角形”,这是假命题,因为对应角相等的三角形不一定全等,可能是相似三角形。
(3)逆命题为 “有两个角相等的三角形是等腰三角形”,这是真命题,它是等腰三角形的判定定理。
例 2:证明命题 “如果一个三角形的两个角相等,那么这两个角所对的边也相等” 是真命题。
分析:引导学生画出图形,写出已知、求证,然后进行证明。
已知:在△ABC 中,∠B = ∠C。
求证:AB = AC。
证明:作∠BAC 的平分线 AD,交 BC 于点 D。
因为 AD 平分∠BAC,所以∠BAD = ∠CAD。
在△ABD 和△ACD 中,
∠B = ∠C,
∠BAD = ∠CAD,
AD = AD(公共边),
所以△ABD≌△ACD(AAS)。
所以 AB = AC。
(四)课堂练习(10 分钟)
写出下列命题的逆命题,并判断真假。
(1)如果 x = 2,那么 x = 4。
(2)直角三角形的两个锐角互余。
(3)对顶角相等。
判断下列说法是否正确:
(1)每个命题都有逆命题。
(2)每个定理都有逆定理。
(3)真命题的逆命题一定是真命题。
(4)假命题的逆命题一定是假命题。
(五)课堂小结(5 分钟)
与学生一起回顾互逆命题、互逆定理的概念,以及如何判断命题的真假。
强调:原命题为真,逆命题不一定为真;原命题为假,逆命题也不一定为假。
(六)布置作业(5 分钟)
课本课后习题,要求学生认真书写解题过程,判断命题真假时要说明理由。
拓展作业:收集生活中或数学学习中至少两个互逆命题,并分析它们的真假性。
五、教学反思
在教学过程中,要注重引导学生积极思考、主动参与,通过实际例子帮助学生理解抽象的概念。对于学生在判断命题真假和写逆命题时容易出现的错误,要及时给予纠正和指导。在今后的教学中,可以进一步加强练习,提高学生的逻辑思维能力和解决问题的能力。
5
课堂检测
4
新知讲解
6
变式训练
7
中考考法
8
小结梳理
9
布置作业
学习目录
1
复习引入
2
新知讲解
3
典例讲解
导入新知
(2)试一试,你能在坐标系中画出这个函数的图象吗?
刘翔在2004 年雅典奥运会110 m 栏比赛中以 12.91s 的成绩夺得金牌,被称为中国“飞人” .如果刘翔在比赛中跑完全程所用的时间为 t s,平均速度为v m/s .
(1)你能写出用t 表示v 的函数表达式吗
画出反比例函数 与 的图象.
探究新知
知识点
反比例函数的图象和性质
【想一想】
用“描点法”画函数图象都有哪几步?
列表
描点
连线
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
… …
… …
-1
-1.2
-1.5
-2
-3
-6
6
3
2
1.5
1.2
1
-2
-2.4
-3
-4
-6
6
4
3
2.4
2
探究新知
- 12
12
注:x的值不能为零,但可以以零为基础,左右均匀、对称地取值.
O
-2
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出各点.
5
6
x
y
4
3
2
1
1
2
3
4
5
6
-3
-4
-1
-5
-6
-1
-2
-3
-4
-5
-6
连线:用光滑的曲线顺次连接各点,即可
得 的图象.
探究新知
x 增大
O
-2
5
6
x
y
4
3
2
1
1
2
3
4
5
6
-3
-4
-1
-5
-6
-1
-2
-3
-4
-5
-6
观察这两个函数图象,回答问题:
【思考】
(1) 每个函数图象分
别位于哪些象限?
(2) 在每一个象限内,
随着x的增大,y 如何
变化?你能由它们的
解析式说明理由吗?
y
减
小
探究新知
(3) 对于反比例函数 (k>0),考虑问题(1)(2),你能得出同样的结论吗?
O
x
y
探究新知
(1)由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交;
(2)在每个象限内,y 随 x 的增大而减小.
反比例函数 (k>0) 的图象和性质:
归纳:
探究新知
O
x
y
(1)函数 图象在第_______象限,在每个象限内, y随x的增大而 ______.
一、三
减小
(2)已知反比例函数 在每一个象限内,y随x的增大而减小,则m的取值范围是_____.
m>2
探究新知
做一做:
观
察
与
思
考
当 k =-2,-4,-6时,反比例函数 的图象,有哪些共同特征?
y
x
O
y
x
O
y
x
O
探究新知
回顾上面我们利用函数图象,从特殊到一般研究反比例函数 (k>0) 的性质的过程,你能用类似的方法研究反比例函数 (k<0)的图象和性质吗?
y
x
O
y
x
O
y
x
O
探究新知
反比例函数 (k<0) 的图象和性质:
(1)由两条曲线组成,且分别位于第二、四象限,它们与x轴、y轴都不相交;
(2)在每个象限内,y随x的增大而增大.
归纳:
探究新知
y
x
O
反比例函数的图象和性质
形状
位置
增减性
图象的发展趋势
对称性
由两支曲线组成的.因此称它的图象为双曲线;
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
反比例函数的图象无限接近于x、y轴,但永远不能到达x、y轴.
(1)反比例函数的图象是轴对称图形,也是中心对称图形.直线y=x和y=-x都是它的对称轴;(2)反比例函数 与 的图象关于x轴对称,也关于y轴对称.
探究新知
A. y1 > y2
B. y1 = y2
C. y1 < y2
D. 无法确定
C
反比例函数 的图象上有两点 A(x1,y1),B(x2, y2),且点A,B 均在该函数图象的第一象限部分,若 x1> x2,则 y1与y2的大小关系为 ( )
解析:因为8>0,且 A,B 两点均在该函数图象的第一象限部分,根据 x1>x2,可知y1,y2的大小关系.
探究新知
考点 1
利用反比例函数的性质比较大小
已知点 A(-3,a),B(-2,b),在双曲线 ,则 a___b(填>、=或<).
>
巩固练习
已知点(-1,y1),(2,y2),(3,y3)在反比例函数 (k≠0) 的图象上,则下列结论中正确的是( )
A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1
B
已知反比例函数 ,在每一象限内,y 随 x 的增大而增大,求a的值.
解:由题意得a2+a-7=-1,且a-1<0.
解得 a=-3.
探究新知
考点 2
利用反比例函数的图象和性质求字母的值
已知反比例函数 在每个象限内,y 随着 x 的增大而减小,求 m 的值.
解:由题意得 m2-10=-1,且 3m-8>0.
解得m=3.
巩固练习
D
返回
1.
A.图象经过点(-3,2)
B.图象分别位于第二、四象限
C.在每个象限内,y的值随x的值增大而增大
D.x≥-1时,y≥6
返回
B
2.
A.(1,10) B.(-2,5) C.(2,5) D.(2,8)
3.
【点拨】
【答案】C
返回
4.
科技承载梦想,创新始于少年.某校科技社团的学生们制作了一艘轮船模型,实验过程中他们发现在某段航行过程中轮船模型的牵引力F(N)是其速度v(m·s-1)的反比例函数,其图象如图所示,下列说法不正确的是( )
【点拨】
【答案】B
A.根据图象可知,F·v是定值,F随v的增大而减小,选项正确,不符合题意;B.当F>10 N时,v<2 m·s-1,选项错误,符合题意;
返回
5.
返回
0
【点拨】
6.
-5
(答案不唯一)
【点拨】
返回
解析式
图象
所在 象限
渐进性
k>0,一、三象限
双曲线
k﹤0,二、四象限
x
y
o
x
y
o
当k>0时,在每一象限
内, y随x的增大而减小
当k﹤0时,在每一象限
内, y随x的增大而增大
增减性
双曲线的两支无限靠近坐标轴,但无交点
对称性
既是轴对称图形也是中心对称图形
与 的图象关于x轴对称,也关于y轴对称
课堂小结
或
或
谢谢观看!