中小学教育资源及组卷应用平台
第十九章一次函数单元测试人教版2024—2025学年八年级下册
总分:120分 时间:90分钟
姓名:________ 班级:_____________成绩:___________
一.单项选择题(每小题5分,满分40分)
题号 1 3 4 5 6 7 8
答案
1.一次函数y=2x+3的图象经过( )
A.第一、二、三象限 B.第一、三、四象限
C.第一、二、四象限 D.第二、三、四象限
2.若正比例函数y=(2m﹣1)x的图象经过第二、四象限,则m的取值范围是( )
A. B. C. D.
3.在函数y中,自变量x的取值范围是( )
A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5
4.下列曲线中不能表示y是x的函数的是( )
A. B. C. D.
5.在同一平面直角坐标系中,函数y=ax和y=﹣x+a(a>0)的图象可能是( )
A. B. C. D.
6.小磊在画一次函数的图象时列出了如下表格,小颖看到后说有一个函数值求错了.这个错误的函数值是( )
x … ﹣3 ﹣2 ﹣1 0 1 2 …
y … 9 5 1 ﹣4 ﹣7 ﹣11 …
A.1 B.﹣4 C.﹣7 D.﹣11
7.如图,一次函数yx+4的图象分别与x轴、y轴交于点A、B,点C在y轴的正半轴上,若点B关于直线AC的对称点B′恰好落在x轴上,则直线AC所对应的函数表达式为( )
yx B.yx
C.yx D.yx
8.已知一次函数y=kx+b,当0≤x≤2时,函数值y的取值范围是﹣1≤y≤3,则k+b的值为( )
A.﹣1 B.1 C.﹣1或1 D.1或2
二.填空题(每小题5分,满分20分)
9.如图直线y1=kx+2(k≠0)与y2=x+b交于P点,点P的横坐标是1,则关于x的方程kx+2=x+b的解是 .
10.若一次函数y=(3﹣k)x﹣k的图象不经过第二象限,则k的取值范围是 .
11.将直线y=﹣2x向下平移后得到直线l,若直线l经过点(a,b),且2a+b=﹣3,则直线l的解析式为 .
12.如图,直线与x,y轴分别相交于点A,B,点C在线段AB上,且点C坐标为(﹣6,m),点D为线段OB的中点,点P为OA上一动点,则当△PCD的周长最小时,点P的坐标为 .
三.解答题(共6小题,总分60分,每题须有必要的文字说明和解答过程)
13.如图,在平面直角坐标系xOy中,点A,B的坐标分别为(2,0),(0,4).
(1)求直线AB的函数表达式;
(2)若P为直线AB上一动点,△AOP的面积为6,求点P的坐标.
14.已知y与x﹣1成正比例,当x=﹣1时,y=4.
(1)求出y与x的函数关系式;
(2)请通过计算,判断点(3,2)是否在这个函数的图象上.
15.已知一次函数y1=kx+b,y2=bx﹣2k+3(其中k、b为常数且k≠0,b≠0)
(1)若y1与y2的图象交于点(2,3),求k,b的值;
(2)若b=k﹣1,当﹣2≤x≤2时,函数y1有最大值3,求此时一次函数y1的表达式.
(3)若对任意实数x,y1>y2都成立,求k的取值范围.
16.如图,直线y=2x+1与直线y=mx+n相交于点P(1,b),且两直线分别与x轴分别交于A,B两点,且点B坐标为(4,0).
(1)求点P坐标;
(2)一元一次方程mx+n=0的解为 ;
(3)若直线y=2x+1上有一点Q,使得S△ABP,求点Q的坐标.
17.“双减”政策颁布后,学校开展了延时服务,并增加体育锻炼时间.某体育用品商店抓住商机,购进一批乒乓球拍和羽毛球拍进行销售,其进价和售价如表所示.
进价 售价
乒乓球拍(元/套) 35 a
羽毛球拍(元/套) 40 b
某班甲体育小组购买2套乒乓球拍和1套羽毛球拍共花费160元,乙体育小组购买1套乒乓球拍和2套羽毛球拍共花费170元.
(1)求出a,b的值;
(2)根据销售情况,商店决定再次购进300套球拍,且购进的乒乓球拍套数不少于羽毛球拍套数的一半.若这批球拍的进价和售价均不变,且能够全部售完,如何购货才能获利最大?
18.在平面直角坐标系中,已知直线l:y=(k﹣1)x+3与y轴交于点P,矩形ABCD的顶点坐标分别为A(﹣2,1),B(﹣2,﹣2),C(3,﹣2).
(1)若点D在直线l上,求k的值;
(2)若直线l将矩形面积分成相等的两部分,求直线l的函数表达式;
(3)若直线l与矩形ABCD有交点(含边界),直接写出k的取值范围.
参考答案
一、选择题
1—8:ACDCBBDB
二、填空题
9.【解答】解:x的方程kx+2=x+b的解为:x=1,
故答案为:x=1.
10.【解答】解:由题意知,一次函数y=(3﹣k)x﹣k的图象不经过第二象限,
故,
解之得:0≤k<3.
故答案为:0≤k<3.
11.【解答】解:设直线y=﹣2x向下平移m个单位后得到直线l,
∴直线l的解析式为y=﹣2x﹣m,
∵直线l经过点(a,b),
∴﹣2a﹣m=b,
∴m=﹣(2a+b),
∵2a+b=﹣3,
∴m=3,
∴直线l的解析式为y=﹣2x﹣3.
故答案为:y=﹣2x﹣3.
12.【解答】解:如图,作D关于x轴对称点E,连接CE,交x轴于点P′,当点P与点P′重合时,△PCD的周长最小,
∴PD=PE,
∴△PCD的周长PC+PD+CD=PC+PE+CD=CE+CD,
∵点C(﹣6,m)在直线上,
∴,
∴C(﹣6,1),
由直线,当x=0时,y=4,
∴B(0,4),
由题意可得:D(0,2),
∴E(0,﹣2),
设直线CE解析式为y=kx+b,
∴,
∴,
∴,
当y=0时,x=﹣4,
∴点P的坐标为(﹣4,0),
故答案为:(﹣4,0).
三、解答题
13.【解答】解:(1)设直线AB的解析式为y=kx+b,
把A(2,0),B(0,4)分别代入得,
解得,
∴直线AB的解析式为y=﹣2x+4;
(2)设P(t,﹣2t+4),
∵△AOP的面积为6,
∴2×|﹣2t+4|=6,
解得t=﹣1或t=5,
∴P点坐标为(﹣1,6)或(5,﹣6).
14.【解答】解:(1)设y=k(x﹣1),
把x=﹣1,y=4代入得4=k×(﹣1﹣1),
解得k=﹣2,
∴y=﹣2(x﹣1),
即y=﹣2x+2;
(2)∵x=3时,y=﹣2x+2=﹣4≠2,
∴点(3,2)不在函数y=﹣2x+2的图象上.
15.【解答】解:(1)把(2,3)代入y1,y2,得:
,解得:;
(2)若b=k﹣1,则:y1=kx+k﹣1,
①当k>0时,y随x的增大而增大,
∵﹣2≤x≤2,
∴当x=2时,y有最大值为2k+k﹣1=3,解得:;
∴;
①当k<0时,y随x的增大而减小,
∵﹣2≤x≤2,
∴当x=﹣2时,y有最大值为﹣2k+k﹣1=3,解得:k=﹣4;
∴y1=﹣4x﹣5
综上:或y1=﹣4x﹣5.
(3)由题意:两条直线平行且直线y1在直线y2的上方,
∴k=b,b>﹣2k+3,
∴k>﹣2k+3,
∴k>1.
16.【解答】解:(1)把P(1,b)代入y=2x+1得b=2×1+1=3,
∴点P的坐标为(1,3);
(2)∵直线y=mx+n与x轴交点B(4,0),
∴一元一次方程mx+n=0的解为x=4;
故答案为:x=4;
(3)设Q(t,2t+1),
当y=0时,2x+1=0,
解得x,
∴A(,0),
∵S△ABP,
∴(4)×3(4)×|2t+1|,
解得t或t,
∴Q点的坐标为(,6)或(,﹣6).
17.【解答】解:(1)根据题意得:,
解得:,
答:a、b的值分别是50元、60元;
(2)设购进乒乓球拍x套,羽毛球拍(300﹣x)套.总利润为y元,
由题意得:x(300﹣x),
解得:x≥100,
∵y=(50﹣35)x+(60﹣40)(300﹣x)
=﹣5x+6000,
∵﹣5<0,
∴y随x的增大而减小,
∴当x=100时,y最大,且最大值为:﹣5×100+6000=5500(元),
此时300﹣x=200,
答:购进乒乓球拍100套,羽毛球拍200套,获利最大,最大利润为5500元.
18.【解答】解:(1)由题意可知:点D(3,1),
将点D(3,1)代入直线l:y=(k﹣1)x+3中,1=3k﹣3+3,
解得:.
(2)∵矩形是中心对称图形,直线l将矩形分成面积相等的两部分.
∴直线l一定经过矩形的对称中心;
∵矩形顶点A(﹣2,1),C(3,﹣2),
∴其对称中心的坐标为,
代入直线l:y=(k﹣1)x+3中,解得k=﹣6,
∴直线l的函数表达式为y=﹣7x+3.
(3)如图:
∵A(﹣2,1),D(3,1),
直线l:y=(k﹣1)x+3经过A(﹣2,1)时,1=﹣2(k﹣1)+3,
解得k=2,
当直线l:y=(k﹣1)x+3经过D(3,1)时,1=3(k﹣1)+3,
解得k,
由图象可知,k的取值范围是k≥2或.
21世纪教育网(www.21cnjy.com)