第27章《相似三角形》复习题
【题型1 A字模型】
1.如图,在△ABC中,点D在边AB上,点E、点F在边AC上,且DEBC,.
(1)求证:DFBE;
(2)如且AF=2,EF=4,AB=6.求证△ADE∽△AEB.
2.如图,,分别是与边上的高.
求证:.
3.如图,P为的边上的一点,E,F分别为,的中点,,,的面积分别为S,S1,S2.若,则的值是( )
A.24 B.12 C.6 D.10
4.图,,点H在BC上,AC与BD交于点G,AB=2,CD=3,求GH的长.
【题型2 8字模型】
1.已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.
(1)求证:△BND∽△CNM;
(2)如果AD2=AB AF,求证:CM AB=DM CN.
2.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF 的面积为2,则△ABC的面积为( )
A.8 B.10 C.12 D.14
3.如图,在平行四边形中,E为边的中点,连接,若的延长线和的延长线相交于点F.
(1)求证:;
(2)连接和相交于点为G,若的面积为2,求平行四边形的面积.
4.如图在平行四边形ABCD中,E是CD的中点,F是AE的中点,CF交BE于点G,若,则 .
【题型3 AX模型】
1.已知如图,在梯形中,,、的延长线相交于点,、相交于点,连结并延长交于点,交于点.那么线段与是否相等?请说明理由.
2.如图,中,中线,交于点,交于点.
(1)求的值.
(2)如果,,请找出与相似的三角形,并挑出一个进行证明.
3.如图△ABC中,AB=AC=5,BC=8,G是△ABC的重心,GH⊥AB于H,则GH的长为 .
4.如图,在平行四边形ABCD中,AD=AC,∠ADC=α,点E为射线BA上一动点,且AE<AB,连接DE,将线段DE所在直线绕点D顺时针旋转α交BA延长线于点H,DE所在直线与射线CA交于点G.
(1)如图1,当α=60°时,求证:△ADH≌△CDG;
(2)当α≠60°时,
①如图2,连接HG,求证:△ADC∽△HDG;
②若AB=9,BC=12,AE=3,请直接写出EG的长.
【题型4 母子型】
1.如图1,,,,点从点出发以每秒个单位长度的速度向点运动,点同时从点出发以每秒个单位长度的速度向点运动,当一点到达终点时,另一点也停止运动.
(1)求的长.
(2)当以点、、为顶点的三角形与相似时,求的值.
(3)如图2,将本题改为点从点出发以每秒个单位长度的速度在上向点运动,点同时从点出发向点运动,其速度是每秒个单位长度,其它条件不变,求当为何值时,为等腰三角形.
2.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在一直线上,连接AF并延长交边CD于点M.
(1)求证:△MFC∽△MCA;
(2)求证△ACF∽△ABE;
(3)若DM=1,CM=2,求正方形AEFG的边长.
3.定义:如图,若点P在三角形的一条边上,且满足,则称点P为这个三角形的“理想点”.
(1)如图①,若点D是的边AB的中点,,,试判断点D是不是的“理想点”,并说明理由;
(2)如图②,在中,,,,若点D是的“理想点”,求CD的长.
4.如图:在矩形ABCD中,,,动点Р以的速度从A点出发,沿AC向C点移动,同时动点Q以的速度从点C出发,沿CB向点B移动,设P、Q两点移动的时间为t秒.
(1)______m,______m,_____m(用含t的代数式表示)
(2)t为多少秒时,以P、Q、C为顶点的三角形与相似?
(3)在P、Q两点移动过程中,四边形ABQP与CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.
【题型5 三角形内接矩形型】
1.如图,在△ABC中,∠C=90°,AC=BC,AB=8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC﹣CB于点D,以PD为边在PD右侧作正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).
(1)当点D在边AC上时,正方形PDEF的边长为 (用含t的代数式表示).
(2)当点E落在边BC上时,求t的值.
(3)当点D在边AC上时,求S与t之间的函数关系式.
(4)作射线PE交边BC于点G,连结DF.当DF=4EG时,直接写出t的值.
2.如图,已知三角形铁皮的边,边上的高,要剪出一个正方形铁片,使、在上,、分别在、上,则正方形的边长 .
3.有一块直角三角形木板,,,,要把它加工成一个无拼接的面积最大的正方形桌面.甲、乙两位同学的加工方法分别如图1、图2所示.请你用学过的知识说明哪位同学的方法符合要求(加工损耗忽略不计).
4.如图1,在△ABC中,AB=AC=5,BC=6,正方形DEFG的顶点D、G分别在AB、AC上,EF在BC上.
(1)求正方形DEFG的边长;
(2)如图2,在BC边上放两个小正方形DEFG、FGMN,则DE= .
【题型6 双垂直型】
1.如图所示,在中,,垂足分别为D、E两点,则图中与相似的三角形有( )
A.4个 B.3个 C.2个 D.1个
2.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC是( )
A.3:2 B.2:3 C. D..
3.中,,,点E为的中点,连接并延长交于点F,且有,过F点作于点H.
(1)求证:;
(2)求证:;
(3)若,求的长.
4.如图1,在正方形中,长为,点和点分别是,边上一点,且,连接,,和相交于点.
(1)求证:;
(2)如图2,过作,垂足为.
①若,求的长;
②如图3,连接并延长交于点,若为的中点,求的值.
【题型7 手拉手型】
1.如图,四边形和四边形都是正方形,C,F,G三点在同一直线上,连接并延长交边于点M.
(1)求证:;
(2)求的值;
(3)若,求正方形的边长.
2.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC︰BC=3︰4,则BD︰CE为( )
A.5︰3 B.4︰3 C.︰2 D.2︰
3.如图,以的两边分别向外作等边和等边,与交于点P,已知.
(1)求证:;
(2)求的度数及的长;
(3)若点Q、R分别是等边和等边的重心(三边中线的交点),连接,作出图象,求的长.
4.如图,正方形ABCD,对角线AC,BD相交于O,Q为线段DB上的一点,,点M、N分别在直线BC、DC上.
(1)如图1,当Q为线段OD的中点时,求证:;
(2)如图2,当Q为线段OB的中点,点N在CD的延长线上时,则线段DN、BM、BC的数量关系为 ;
(3)在(2)的条件下,连接MN,交AD、BD于点E、F,若,,求EF的长.
【题型8 一线三等角型】
1.如图,在中,点D、E分别在边上,连接,且.
(1)证明:;
(2)若,当点D在上运动时(点D不与重合),且是等腰三角形,求此时的长.
2.【感知】如图①,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),.易证.(不需要证明)
【探究】如图②,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),.若,,,求AP的长.
【拓展】如图③,在中,,,点P在边AB上(点P不与点A、B重合),连结CP,作,PE与边BC交于点E,当是等腰三角形时,直接写出AP的长.
3.(1)问题发现:如图1,,将边绕点C顺时针旋转得到线段,在射线上取点D,使得.请求出线段与的数量关系;
(2)类比探究:如图2,若,作,且,其他条件不变,则线段与的数量关系是否发生变化 如果变化,请写出变化后的数量关系,并给出证明;
(3)拓展延伸:如图3,正方形的边长为6,点E是边上一点,且,把线段逆时针旋转得到线段,连接,直接写出线段的长.
4.如图,在Rt△ABC中,∠ACB=90°,,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.
(1)探究发现:
如图1,若m=n,点E在线段AC上,则= ;
(2)数学思考:
①如图2,若点E在线段AC上,则= (用含m,n的代数式表示);
②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;
(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.
【题型9 倒数型】
1.如图,AF∥BC,AC、BF相交于E,过E作ED∥AF交AB于D.求证:.
2.如图,在中,,过点B作,垂足为B,且,连接CD,与AB相交于点M,过点M作,垂足为N.若,则MN的长为 .
3.如图,在△ABC中,CD⊥AB于点D,正方形EFGH的四个顶点都在△ABC的边上.求证:
4.正方形ABCD中,以AB为边作等边三角形ABE,连接DE交AC于F,交AB于G,连接BF.求证:
(1) AF+BF=EF;
(2)
【题型10 旋转型】
1.已知中点分别在边、边上,连接点、点在直线同侧,连接且.
(1)点与点重合时,
①如图1,时,和的数量关系是 ;位置关系是 ;
②如图2,时,猜想和的关系,并说明理由;
(2)时,
③如图3,时,若求的长度;
④如图4,时,点分别为和的中点,若,直接写出的最小值.
2.已知正方形DEFG的顶点F在正方形ABCD的一边AD的延长线上,连结AG,CE交于点H,若,,则CH的长为 .
3.在同一平面内,如图①,将两个全等的等腰直角三角形摆放在一起,点A为公共顶点,.如图②,若△ABC固定不动,把△ADE绕点A逆时针旋转,使AD、AE与边BC的交点分别为M、N点M不与点B重合,点N不与点C重合.
【探究】求证:.
【应用】已知等腰直角三角形的斜边长为4.
(1)的值为______.
(2)若,则MN的长为______.
4.如图,在正方形ABCD中,点P在对角线BD上,直线AP交CD于E,PF⊥AE交BC于点F,连接AF交BD于M.
(1)判断△APF的形状,并说明理由;
(2)连接EF,求EF:PM的值.
参考答案
【题型1 A字模型】
1.解:(1)∵DEBC,
∴,
∵,
∴,
∴DFBE;
(2)∵AF=2,EF=4,
∴由(1)可知,,AE=6,
∵AB=6,
∴,
∴,
∴,
∵∠A=∠A,
∴△ADE∽△AEB.
2.证明:,分别是与边上的高,
,
,
,
,
即,
,
.
3.B
【分析】过P作平行于,由与平行,得到平行于,可得出四边形与都为平行四边形,进而确定出与面积相等,与面积相等,再由为的中位线,利用中位线定理得到为的一半,且平行于,得出与相似,相似比为1:2,面积之比为1:4,求出的面积,而面积=面积+面积,即为面积+面积,即为平行四边形面积的一半,即可求出所求的面积.
【详解】解:过P作交BC于点Q,由,得到,
∴四边形与四边形都为平行四边形,
∴,,
∴,,
∵为的中位线,
∴,,
∴,且相似比为1:2,
∴,,
∴,
故选:B.
4.解:∵,
∴∠A=∠HGC,∠ABC=∠GHC,
∴△CGH∽△CAB,
∴,
∵,
∴∠D=∠HGB,∠DCB=∠GHB,
△BGH∽△BDC,
∴,
∴,
∵AB=2,CD=3,
∴,
解得:GH=.
【题型2 8字模型】
1.证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
而BE=AB,
∴BE=CD,
而BE∥CD,
∴四边形BECD为平行四边形,
∴BD∥CE,
∵CM∥DB,
∴△BND∽△CNM;
(2)∵AD2=AB AF,
∴AD:AB=AF:AD,
而∠DAB=∠FAD,
∴△ADB∽△AFD,
∴∠1=∠F,
∵CD∥AF,BD∥CE,
∴∠F=∠4,∠2=∠3,
∴∠3=∠4,
而∠NMC=∠CMD,
∴△MNC∽△MCD,
∴MC:MD=CN:CD,
∴MC CD=MD CN,
而CD=AB,
∴CM AB=DM CN.
2.C
【分析】先利用平行四边形的性质得,AD=BC,由可判断△AEF∽△CBF,根据相似三角形的性质得,然后根据三角形面积公式得,则.
【详解】∵平行四边形ABCD
∴,AD=BC
∵E为边AD的中点
∴BC=2AE
∵
∴∠EAC=∠BCA
又∵∠EFA=∠BFC
∴△AEF∽△CBF
如图,过点F作FH⊥AD于点H,FG⊥BC于点G,
则,
∴,
∵△AEF的面积为2
∴
故选C.
3.(1)证明:∵四边形ABCD是平行四边形,
∴,,
∴,
∵点E为DC的中点,
∴,
在和中
∴,
∴,
∴;
(2)∵四边形ABCD是平行四边形,点E为DC的中点,
∴,,
∴,,
∴,
∵的面积为2,
∴,即,
∵
∴,
∴,
∴,
∴.
4.2
【分析】延长CF、BA交于M,根据已知条件得出EF=AF,CE=DC,根据平行四边形的性质得出DC∥AB,DC=AB,根据全等三角形的判定得出△CEF≌△MAF,根据全等三角形的性质得出CE=AM,求出BM=3CE,根据相似三角形的判定得出△CEG∽△MBG,根据相似三角形的性质得出比例式,再求出答案即可.
【详解】解:延长CF、BA交于M,
∵E是CD的中点,F是AE的中点,
∴EF=AF,CE=DC,
∵四边形ABCD是平行四边形,
∴DC∥AB,DC=AB,
∴CE=AB,∠ECF=∠M,
在△CEF和△MAF中
,
∴△CEF≌△MAF(AAS),
∴CE=AM,
∵CE=AB,
∴BM=3CE,
∵DC∥AB,
∴△CEG∽△MBG,
∴ ,
∵BE=8,
∴ ,
解得:GE=2,
故答案为:2.
【题型3 AX模型】
1.相等.理由如下:
∵,
∴∽,∽,∽.
∴,,.
∴.
∴.
∵,
∴∽,∽,∽.
∴,,.
∴.
∴.
∴.
∴.
∴.
2.解:(1)是的中点,是的中点,
,,
,
,
,
,,
,
,
,
,
,
.
(2)当,时,
由(1)可得
,,,
,
,,
,
又,
,
,,
,
,
,
.
3.
【分析】首先证明,求得,再证明即可得到结论.
【详解】连接并延长交于E,连接并延长交AC于F,连接EF,如图,
点是重心,
是的中线,
,F分别是,边的中点,
是的中位线,
,,
,
,E为BC的中点
又
在中,,,
,
,
.
故答案为:.
4.(1)证明:∵AD=AC,∠ADC=60°,
∴△ACD为等边三角形,
∵四边形ABCD为平行四边形,
∴AB=CD=BC=AD,∠B=∠ADC=60°,AD∥BC,
∴∠HAD=∠B=60°=∠GCD,
∵∠GDH=∠CDA=60°,
∴∠HDA+∠ADG=∠CDG+∠ADG=60°,
∴∠HDA =∠CDG,
在△ADH和△CDG中
△ADH≌△CDG(ASA);
(2)①证明:∵AD=AC,∠ADC=α,
∴∠ACD=∠ADC=α,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠HAD=∠ADC=α=∠GCD,
∵∠GDH=α=∠ADC,
∴∠ADH+∠ADG=∠CDG+∠ADG=α,
∴∠ADH =∠CDG,
∴△ADH∽△CDG;
②解:当点E在AB上时,过C作CN⊥AB于N,过G作GM⊥AE于M,
∵四边形ABCD为平行四边形,AB∥DC,AB=DC=9,AD=BC=12,
∴∠EAG=∠DCG,∠AEG=∠CDG,
∴△AGE∽△CGD,
∴,
∴,
∵AD=AC=12,
∴AG+CG=AG+3AG=4AG=12,
∴AG=3,
∴CG=AC -AG=12-3=9,
∵AC=AD=BC,CN⊥AB,
∴AN=BN=,
在Rt△BCN中,根据勾股定理CN=,
∴GM∥CN,
∴△AMG∽△ANC,
∴,
∴,,
∴EM=AE -AM=,
在Rt△MGE中,根据勾股定理EG=,
当点E在BA延长线上,过C作CN⊥AB于N,过G作GM⊥AE于M,
∵AE∥CD,
∴∠GAE=∠GCD,∠GEA=∠GDC,
∴△GAE∽△GCD,
∴,
∴,
∵AC=GC -GA=3GA-GA=2GA=12,
∴GA=6,
∵AC=AD=BC,CN⊥AB,
∴AN=BN=,
在Rt△BCN中,根据勾股定理CN=,
∵CN⊥AB, GM⊥AE,
∴GM∥CN,
∴△GMA∽△CNA,
∴,
∴,,
∴EM=AE -AM=3-,
在Rt△GME中,根据勾股定理EG=,
∴综合EG的长为或.
【题型4 母子型】
1.(1)解:
(2)解:解:①当时,
,
即,
解得:,
②当时,
,
即,
解得:,
综上所述,或时,以点、、为顶点的三角形与相似,
(3)解:①如图3,当时,,
解得:,
②如图4,当时,过点作于,
则∠,, ,
,
,
,
,
即,
解得:,
③如图,当时,过点作于,
则, ,
,
,
,
即,
解得:,
综上所述,或或时,为等腰三角形
2.解:(1)四边形是正方形,四边形是正方形,
,
,
,
,
;
(2)四边形是正方形,
,,
,
同理可得,
,
,
,
;
(3),,
,
,
,
,即,
,
,
,
即正方形的边长为.
3.(1)解:点是的“理想点”,理由如下:
是中点,,
,,
,
,
,
,
,
,
,
点是的“理想点”;
(2)①在上时,如图:
是的“理想点”,
或,
当时,
,
,
,即是边上的高,
当时,同理可证,即是边上的高,
在中,,,,
,
,
,
②,,
有,
“理想点” 不可能在边上,
③在边上时,如图:
是的“理想点”,
,
又,
,
,即,
,
综上所述,点是的“理想点”, 的长为或.
4.(1)∵矩形ABCD中,,
∴m
∵动点Р以的速度从A点出发,沿AC向C点移动,同时动点Q以的速度从点C出发,沿CB向点B移动,
∴ ,
∴
故答案为:,,;
(2)根据(1)的结论,得 , , ,
∵
∴当,或时,以P、Q、C为顶点的三角形与相似
当时,得
∴
∴;
当时,得
∴
∴;
(3)如图,过点P作,交BC于点M
∵,
∴
∴
∴
∴
∵四边形ABQP与CPQ的面积相等,四边形ABQP面积
∴
∴
∴
∵
∴无解,即四边形ABQP与CPQ的面积不相等.
【题型5 三角形内接矩形型】
1.(1)∵∠C=90°,AC=BC,
∴∠A=45°=∠B,且DP⊥AB,
∴∠A=∠ADP=45°,
∴AP=DP=2t,
故答案为2t,
(2)如图,
∵四边形DEFP是正方形,
∴DP=DE=EF=PF,∠DPF=∠EFP=90°,
∵∠A=∠B=45°,
∴∠A=∠ADP=∠B=∠BEF=45°,
∴AP=DP=2t=EF=FB=PF,
∵AB=AP+PF+FB,
∴2t+2t+2t=8,
∴t=;
(3)当0<t≤时,正方形PDEF与△ABC重叠部分图形的面积为正方形PDEF的面积,
即S=DP2=4t2,
当<t≤2时,如图,正方形PDEF与△ABC重叠部分图形的面积为五边形PDGHF的面积,
∵AP=DP=PF=2t,
∴BF=8﹣AP﹣PF=8﹣4t,
∵BF=HF=8﹣4t,
∴EH=EF﹣HF=2t﹣(8﹣4t)=6t﹣8,
∴S=S正方形DPFE﹣S△GHE,
∴S=4t2﹣×(6t﹣8)2=﹣14t2+48t﹣32,
综上所述,S与t之间的函数关系式为.
(4)如图,当点E在△ABC内部,设DF与PE交于点O,
∵四边形PDEF是正方形,
∴DF=PE=2PO=2EO,∠DFP=45°,
∴∠DFP=∠ABC=45°,
∴DF∥BC,
∴,
∵DF=4EG,
∴设EG=a,则DF=4a=PE,PO=2a=EO,
∴PG=5a,
∴,
∴,
∴t=,
如图,当点E在△ABC外部,设DF与PE交于点O,
∵四边形PDEF是正方形,
∴DF=PE=2PO=2EO,∠DFP=45°,
∴∠DFP=∠ABC=45°,
∴DF∥BC,
∴,
∵DF=4EG,
∴设EG=a,则DF=4a=PE,PO=2a=EO,
∴PG=3a,
∵,
∴,
∴t=,
综上所述:t=或.
2.
【分析】设AM交GF于H点,然后根据相似三角形的判定与性质求解即可.
【详解】解:如图,设高AM交GF于H点,
∵四边形DEFG为正方形,
∴GF∥DE,即:GF∥BC,
∴AH⊥GF,△AGF∽△ABC,
∴,
设正方形的边长为,
∴,
解得:,
故答案为:.
3.如图1,设甲同学加工的桌面边长为xcm
∵DE∥AB
∴△CDE∽△CBA
∴
即
解得:
如图2,过点B作BH⊥AC,交AC于点H,交DE于点P
由勾股定理得:(cm)
∵
∴(cm)
设乙同学加工的桌面边长为ycm
∵DE∥AC
∴△BDE∽△BAC
∴
即
解得:
∵,即x>y
∴
也就是说甲同学加工的最大正方形桌面面积大于乙同学加工的最大正方形桌面面积
∴甲同学的方法符合要求
4.解:过点作AM⊥BC于点M,
∵AB=AC=5,BC=6,
∴BM=BC=3,
在Rt△ABM中,AM==4,
∵四边形DEFG是矩形,
∴DG∥EF,DE⊥BC,
∴AN⊥DG,四边形EDMN是矩形,
∴MN=DE,
设MN=DE=x,
∵DG∥EF,
∴△ADG∽△ABC,
∴DG:BC=AN:AM,
∴,
解得:DG=﹣x+6,
∵四边形DEFG为正方形,
∴DE=DG,即x=﹣x+6,
解得x=,
∴正方形DEFG的边长为;
(2)由题意得:DN=2DE,
由(1)知:,
∴DE=.
故答案为.
【题型6 双垂直型】
1.A
【分析】本题考查了相似三角形的判定.熟练掌握相似三角形的判定是解题的关键.
根据相似三角形的判定作答即可.
【详解】解:∵,
∴,,,
∴,
∵,,
∴
同理可得,,,,
∴共有四个三角形与相似.
故选:A.
2.B
【分析】只要证明△ACD∽△CBD,可得BC:AC=BD:CD=4:6=2:3,由此即可解决问题.
【详解】∵∠ACB=90°,∴∠B+∠A=90°,
∵∠BDC=90°,∴∠B+∠BCD=90°,
∴∠A=∠BCD,
∵∠ACB=∠CDB=90°,
∴△ACB∽△CDB,
∴BC:AC=BD:CD=4:6=2:3,
故选B.
3.证明:(1),
,
,
,
在和中,,
;
(2)点为的中点,
,
由(1)已证:,
,
设,则,,
,
(等腰三角形的三线合一),
,
又,
,
即;
(3)由(2)已证:,
,
,
,
,即,
解得,
,
,
,
,
在和中,,
,
,
由(2)可知,设,则,
,
解得或(不符题意,舍去),
,
则在中,.
4.(1)证明:∵正方形,
∴,
∵,
∴;
(2)①由(1)可得:,
∵,
∴,
∴,
解得:,,
由(1)得:,,
∴,
∵,
∴,而,
∴,
∴,
∴;
②∵为的中点,,
∴,,
∵,
同理可得:,
∴,
∴设,
∴,
∵,,
∴,而,
∴,
∴,
∵,
∴,
∴设,
∴,
∴,
解得:,
∴,,
∴,
∴.
【题型7 手拉手型】
1.(1)∵四边形是正方形,四边形是正方形,
∴,
∵,
∴,
∵,
∴;
(2)∵四边形是正方形,
∴,
∴,
同理可得,
∴,
∵,
∴,
∴,
∴,
∴;
(3)∵,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
即正方形的边长为.
2.A
【详解】因为∠ACB=90°,AC︰BC=3︰4,则
因为∠ACB=∠AED=90°,∠ABC=∠ADE,
得△ABC △ADE,
得 ,
,
则, .
故选A.
3.(1)证明:∵和都为等边三角形,
∴
∴,
即,
∴
(2)解:∵;
∴,
设交于O,
∵,
∴;
如图①在上取点F,使,
同(1)可得
∴为等边三角形,
∴;
(3)解:
如图②,过点Q作于G,设,
∵点Q、R分别是等边和等边的重心,
∴
∵ ,
∴,
∴,
∴,
∴
4.解:(1)如图,过Q点作QP⊥BD交DC于P,
∴∠PQB=90°.
∵∠MQN=90°,
∴∠NQP=∠MQB,
∵四边形ABCD是正方形,
∴CD=CB,∠BDC=∠DBC=45°.DO=BO,
∴∠DPQ=45°,DQ=PQ,
∴∠DPQ=∠DBC=45°,
∴△QPN∽△QBM,
∴,
∵Q是OD的中点,且PQ⊥BD,
∴DO=2DQ,DP=DC,
∴BQ=3DQ,DN+NP=DC=BC,
∴BQ=3PQ,
∴,
∴NP=BM,
∴DN+BM=BC;
(2)如图,过Q点作QH⊥BD交BC于H,
∴∠BQH=∠DQH=90°,
∴∠BHQ=45°,
∵∠COB=90°,
∴QH∥OC,
∵Q是OB的中点,
∴BH=CH=BC,
∵∠NQM=90°,
∴∠NQD=∠MQH,
∵∠QND+∠NQD=45°,∠MQH+∠QMH=45°,
∴∠QND=∠QMH,
∴△QHM∽△QDN,
∴,
∴HM=ND,
∵BM-HM=HB,
∴BM DN=BC.
故答案为:BM DN=BC;
(3)∵MB:MC=3:1,设CM=x,
∴MB=3x,
∴CB=CD=4x,
∴HB=2x,
∴HM=x.
∵HM=ND,
∴ND=3x,
∴CN=7x,
∵四边形ABCD是正方形,
∴ED∥BC,
∴△NDE∽△NCM,△DEF∽△BMF,
∴,
∴,
∴DE=x,
∴,
∵NQ=9,
∴QM=3,
在Rt△MNQ中,由勾股定理得:
,
∴,
∴,
∴,
设EF=a,则FM=7a,
∴,
∴.
∴EF的长为.
【题型8 一线三等角型】
1.(1)证明:∵,,,
,
;
(2)解: ,,
是等腰直角三角形,
,
,
由勾股定理得:,
①当时,
,
,
,
,
,
点D在上运动时(点D不与重合),点E在上,
此情况不符合题意.
②当时,如图,
,
由(1)可知:,,
∴,
,
;
③当时,,
∵
是等腰三角形,,即,
.
综上,或.
2.探究:证明:∵是的外角,
∴,
即,
∵,
∴,
又∵,
∴,
∴,
∵,,,
∴,
解得:;
拓展:∵AC=BC,
∴∠A=∠B,
∵∠CPB是△APC的外角,
∴∠CPB=∠A+∠PCA,即∠CPE+∠EPB=∠A+∠PCA,
∵∠A=∠CPE,
∴∠ACP=∠BPE,
∵∠A=∠B,
∴△ACP∽△BPE,
当CP=CE时,∠CPE=∠CEP,
∵∠CEP>∠B,∠CPE=∠A=∠B,
∴CP=CE不成立;
当PC=PE时,△ACP≌△BPE,
则PB=AC=8,
∴AP=AB -PB=128=4;
当EC=EP时,∠CPE=∠ECP,
∵∠B=∠CPE,
∴∠ECP=∠B,
∴PC=PB,
∵△ACP∽△BPE,
∴,
即,
解得:,
∴AP=ABPB=,
综上所述:△CPE是等腰三角形时,AP的长为4或.
3.(1)解:∵,
∴.
在和中,
∴,
∴.
(2)发生变化,.
证明:由(1)得,,,
∴,
∴,
∴.
(3)如图所示,作延长线于点,过点作,交于点,交于点,
则,,,
由(1)同理可证,,
∴,,
∴,,
∴.
4.解:当时,即:,
,
,
,
,
,
,
,
即,
∽,
,
,,
∽,
,
,
,
,
,
,
,
,
即,
∽,
,
,,
∽,
,
成立如图3,
,
,
又,
,
,
,
,
即,
∽,
,
,,
∽,
,
.
由有,∽,
,
,
,
如图4图5图6,连接EF.
在中,,,
,
如图4,当E在线段AC上时,
在中,,,
根据勾股定理得,,
,或舍
如图5,当E在AC延长线上时,
在中,,,
根据勾股定理得,,
,
,或舍,
③如图6,当E在CA延长线上时,
在中,,,
根据勾股定理得,,
,
,或(舍),
综上:或.
【题型9 倒数型】
1.证明: 分别过点C、E、F作直线AB的垂线,垂足分别是K、H、G
则(模型结论).
2.
【分析】根据MN⊥BC,AC⊥BC,DB⊥BC,得 ,可得,因为,列出关于MN的方程,即可求出MN的长.
【详解】∵MN⊥BC,DB⊥BC,
∴AC∥MN∥DB,
∴ ,
∴
即,
又∵,
∴,
解得,
故填:.
3.证明:
∵ 四边形EFGH是正方形,
∴ EF⊥AB
∵ CD⊥AB,
∴ EF∥CD,
∴ △AEF∽△ACD.
∴ = ①
∵ EH∥AB,
∴ △CEH∽△CAB
∴ =
∵ EH=EF,
∴ = ②
①+②得, + = + =1,
∴ + =
4.证明:(1)如图,在EF上截取FH=AF.
∵ ∠EAB=600,∠BAD=900,AE=AD,
∴ ∠1=∠2=150. ∠3=∠2+∠4=600.
∴ △AFH为等边三角形.
∴ ∠EAH=∠BAF.
∴ △EAH≌△BAF.
∴ EH=BF.
∴ AF+BF=FH+EH=EF.
(2)如图,过点G作GK∥BF交AC于点K.
由(1)可得∠BFC=600,
∴ AH∥GK∥BF.
∴ 由模型4,得 + = .
∵ AH=AF,GK=GF,
∴ + =
【题型10 旋转型】
1.(1)①解:∵
∴∠ABC=∠EDF=90°,∠A+∠BCA=90°
∴∠ABE+∠EDC=∠CDF+∠EDC
∴∠ABE=∠CDF
∵
∴AB=CB,DE=DF
∴△ABE≌△CDF
∴AE=FC,∠A=∠DCF
∴∠DCF+∠BCA=90°
∴∠ACF=90°
∴AE⊥FC
故答案为:AE=FC;AE⊥FC;
②证明:AE=2FC;AE⊥FC
∵DF⊥DE
∴∠EDF=∠ABC=90°
∴∠ABE=∠CDF·
∵
∴△ABE∽△CDF
∴∠A=∠DCF,
∵∠A+∠ACB=90°
∴∠DCF+∠ACB=90°
∴∠ACF=90°;即FC⊥AE·
(2)③解:作GD⊥BC于点D,交AC于点G;作GH⊥AB于点H,交AB于点H;DM⊥AC.
∴四边形BDGH为矩形
∴DB=HG
∵∠ABC=90°,
∴∠A=∠HGA =∠ACB=45°
∴DC=DG
∵DE⊥DF
∴∠EDG=∠FDC
∴△EDG≌△FDC(SAS)
∴EG=FC
∵BD=2CD
∴令DC=a,BD=2a
∴AG=
∴EG=,MD=·
∵
∴
解得,(舍)
∴FC = EG=6
④∵,AB=10
∴BC=5
∵
∴CD=
由③易证∠ECF=90°
在Rt△EDF和Rt△ECF中,点M为EF的中点,连接MD和MC
∴DM=CM=
∴点M的运动轨迹为是CD的垂直平分线的一部分,作CD的垂直平分线MH交BC于H
∴当NM⊥MH时,MN的最小,易知MN∥BC,MH∥AB,CH==
取BC的中点G,连接NG,则CG==
∴NG为△ABC的中位线
∴NG∥AB
∴MH∥NG
∴四边形NMHG为平行四边形
∴此时MN=GH=CG-CH=
即MN的最小值为.
2.
【分析】连接EG,与DF交于N,设CD和AH交于M,证明△ANG∽ADM,得到,从而求出DM的长,再通过勾股定理算出AM的长,通过证明△ADG≌△CDE得到∠DAG=∠DCE,从而说明△ADM∽△CHM,得到,最后算出CH的长.
【详解】解:连接EG,与DF交于N,设CD和AH交于M,
∴∠GNA=90°,DN=FN=EN=GN,
∵∠MAD=∠GAN,∠MDA=∠GNA=90°,
∴△ANG∽ADM,
∴,
∵,
∴DF=EG=2,
∴DN=NG=1,
∵AD=AB=3,
∴,
解得:DM=,
∴MC=,AM=,
∵∠ADM+∠MDG=∠EDG+∠CDG,
∴∠ADG=∠EDC,
在△ADG和△CDE中,
,
∴△ADG≌△CDE(SAS),
∴∠DAG=∠DCE,
∵∠AMD=∠CMH,
∴∠ADM=∠CHM=90°,
∴△ADM∽△CHM,
∴,
即,
解得:CH=.
3.(1)∵△ABC为等腰直角三角形,,
∴,同理,,
∵,
,
∴,∴;
(2)(1)∵等腰直角三角形的斜边长为4,
∴,∵,
∴,∴,∴,
故答案为:8;
(2)∵,∴,∵,
∴,∴,
故答案为:.
4.(1)解:△APF是等腰直角三角形,理由如下:
如图,过点P作PG⊥BC于点G,交AD于点H,
∴GH=CD,
∵四边形ABCD是正方形,
∴∠ADB=45°,AD=CD,
∵∠PHD=90°,
∴∠HPD=45°,
∴HD=HP,
∴AH=GP,
∵PF⊥AE,
∴∠APF=90°,
∴∠APH+∠FPG=90°,
∵∠PAH+∠APH=90°,
∴∠PAH=∠FPG,
在△APH和△PFG中,
,
∴△APH≌△PFG(ASA),
∴AP=FP,
∴△APF是等腰直角三角形;
(2)解:如图,将△ADE绕点A顺时针旋转90°得到△ABN,
∵∠ADE=∠ABN=90°,∠ABC=90°,
∴∠ABC+∠ABN=180°,
∴C,B,N共线,
∵∠EAF=45°,
∴∠NAF=∠FAB+∠BAN=∠FAB+∠DAE=45°,
∴∠FAE=∠FAN,
在△FAN和△FAE中,
,
∴△FAN≌△FAE(SAS),
∴∠AFN=∠AFE,
∵∠FMB=∠AMP,∠MBF=∠PAM=45°,
∴∠BFM=∠APM,
∴∠APM=∠AFE,
∴△APM∽△AFE,
∴EF:PM=AP:AF,
由(1)知:△APF是等腰直角三角形,
∴AF:AP=2:,
∴EF:PM=2:.