2025年山西省初中学业水平学情调研测试卷数学试卷(图片版,含答案)

文档属性

名称 2025年山西省初中学业水平学情调研测试卷数学试卷(图片版,含答案)
格式 zip
文件大小 3.3MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2025-05-08 07:23:55

文档简介

您名
准考证号」
2025年山西省初中学业水平学情调研测试卷


注意事项:
1.本试卷分为第1卷和第Ⅱ蒸两部分、全卷共8页,满分120分,考沈时间120分钟
2,答发前,考生务必将自己的姓名、准考证号护写在本试卷相应的位置,
3.答荣全部在答题卡上完成,答在本诚卷上无效
4:考试站束后,将术试张和答题卡一那交回,
第I卷选择题(共30分)
一、选择题〔本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选
项中,只有一项符合题目要求,诗选出并在答题卡上将该项涂黑】
【,如图,数轴上点A表示的数是0,点B表示的数可能是下列四个数中的
A.-3
B.-1
B
C,2
D.3
0
(第1题图)
2.下列气象生活指数图标中,文字上方的图案既是轴对称图形又是巾心对称图形的是
/\

路况指数
运到指数
过极指数
穿衣指数
B
C
D
3.下列运算正确的是
A.2+5=5
B.2×F=6
C.32-2=3
D.14+万=2
4,亚踪是一种内圆外方的筒型玉器,中央有一个贯通上下的圆孔,是中国古代的一
种札仪重器。观察如图所示的玉踪模型,得到的俯祝图为
正面
A
C
〔第4题图)
数学第1页(共8页)
5.有一个质量均匀的透明水晶球,过球心的槭而如图所示,
PQ为直径,一单色光线AP从点P射人,折射北线P阳从
点B射出,出射光线BC∥PQ.若AP与QP廷长线的夹角
∠APD=74,则人射光线AP所在直线与出射光线BC所在
直线相交形成的∠BEP的度数为
(第5题图)
A.74
B.96
C.106
D.116
6,某团队为研究不同施吧方案对小麦产量的影响,在试验田中控制形响小麦生长的
其他因索,分别选用甲、乙、丙、丁四种方案施比,7个月后得到如下统计结果:
施肥力案



单惠数致的平均致
4202
36.3y
35.58
42.02
单砂粒效的方驺
114.77
65.81
17032
66.38
在本次试险中,从单越粒数的平均数与方差角度看,四种吧方案中效果成好的是
A.甲
B.乙
C.丙
D.T
7.暗而上贴有规格相同的矩形瓷砖.如图,矩形瓷砖ACEF与矩形瓷祓ADCH之间用
三角形绕砖ABC与三角形瓷砖ABD排接,点B,C,E与点B,D,
G分别在同一直线上.小雅发现△ABC与△ABD全等,她的
依据是
A.SAS
B.ASA
D
C.HL
D.SSS
8.化简2--2的结果为
(第了颃图)
a-1
A.a-3
B.a-I
C.a2-2a+1
D.a2-2a-3
a-1
9.如图,取两根长度不等的细木棒AC,BD,将它们的中点合
固定(记为点0),转动木棒AC,在∠AOD由锐角变成钝角
的过程中,分析以木摔四个端点为顶点的四边形ABCD,下
列结论一定成立的是
(第9题图)
A.AB=AD
B.OA=AD
C.∠BAD=∠ABC
D.∠BAD=∠BCD
10.如图,正八边形ABCDEFGH内接于⊙O,连接D,GD.若⊙O
的半径为2,则线發AD,CD与AG围成的图形(阴影部分)面积为
A.2
B.+23
D
C.π42W2
D.r+2
(第10题图)
数学第2页(共8页)数学试题参考答案
一、选择题(本大题共 10个小题,每小题 3分,共 30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A B B A C D C B D C
二、填空题(本大题共 5个小题,每小题 3分,共 15分)
11. x(2 x) 12. 9 13.(4,-3) 14. y 2(x 1)2 2 15. 3 1
20
三、解答题(本大题共 8个小题,共 75分. 解答应写出文字说明,证明过程或演算步骤)
16.(本题共 2个小题,每小题 5分,共 10分)
解:(1)原式=4+1×5×(-3) ································································(3分)
=4+(-15) ········································································(4分)
= -11. ··············································································· (5分)
2 3x y 4,①( )
3x 2y 16.②
②-①,得 3y=12,········································································(7分)
y=4.············································································(8分)
将 y=4代入①,得 3x-4=4,
解,得 x 8 .. ··········································································(9分)3
8
所以原方程组的解是 x , 3 ·························································(10分)
y 4.
17.(本题 6分)
解:(1)∵点 A(3,6)在反比例函数 y k 的图象上,
x
6 k∴ , ···············································································(1分)
3
∴k=18,·················································································· (2分)
18
∴反比例的函数表达式为 y .···················································(3分)
x
18
∵点 B(9,m)在反比例函数 y 的图象上,
x
数学 第 1页(共 5 页)
18
∴m =2.············································································ (4分)
9
(2)27.···························································································· (6分)
18.(本题 9分)
(1)32;··························································································(1分)
····································· (3分)
(2)答案不唯一,例如:·····································································(5分)
①A套餐价格满意度中位数为 3 分,小于 B套餐价格满意度中位数 4 分,所以从中
位数角度看,B套餐价格满意度更高,所以小颖的观点是片面的;
②A套餐价格满意度众数为 3 分,小于 B套餐价格满意度众数 4 分,所以从众数角
度看,B套餐价格满意度更高,所以小颖的观点是片面的;
③A套餐价格满意度平均数为 3.48 分,等于 B套餐价格满意度平均数 3.48 分,所
以从平均数角度看,A,B套餐价格满意度一样,所以小颖的观点是片面的;
④给 A套餐打 5分,4 分,3 分的人共有 11+13+16=40 人,给 B套餐打 5 分,4分,
3分的人共有 8+20+13=41 人,41>40,即 B套餐价格满意度达到“基本满意”及以上
的人数多于 A套餐,所以 B套餐价格满意度更高,所以小颖的观点是片面的.··········
3.4 3 4.6 4 3.48 3
(3) 3.904(分),···········································(7分)
3 4 3
因为 3.744<3.904,所以,A套餐综评得分较低.··································(8分)
建议:答案不唯一,例如:A套餐要更加关注营养搭配.························(9分)
19.(本题 7分)
解:设旺季期间每辆无人车的日均投递量为 x件. ············································(1分)
根据题意,得:
10x+100×70%x≥30000,······································································(4分)
解,得 x≥375. ·················································································(6分)
因为 x为整数,且 x取最小值,所以 x=375.
答:旺季期间每辆无人车的日均投递量至少为 375件. ······························(7分)
数学 第 2页(共 5 页)
20.(本题 7分)
解:延长 GE交 AH于点 M. ·······································································(1分)
根据题意得,∠HMG=90°,四边形 ABCM、四边形 BFGC均为矩形.
MC AB 3, CG BF 4, ····················································(2分)
在 Rt△DMC中,∠DMC=90°,∠DCE=58°,
tan∠DCM= DM , ·········································································(3分)
CM
DM CM tan58 3 1.60 4.80 . ················································(4分)
在 Rt△HMG中,∠HMG=90°,∠HGM=36°,
tan∠HGM= HM ,
GM
HM GM tan36 (CM CG) 0.73 7 0.73 5.11 . .….....…………(5分)
DH=HM -DM =5.11- 4.80=0.31≈0.3(米). ….……….….………… (6分)
答:鸟巢高度 DH的长约为 0.3米. …………………………………(7分)
21.(本题 10分)
a b a b
(1)OD=OE-DE= b ,···················································· (1分)2 2
∵四边形 DHGF为正方形,
∴∠HDF=90°.
在 Rt△ODH中,由勾股定理,得OD2 DH 2 OH 2,··························(2分)
a b 2 a b 2
∴DH 2 OH 2 OD2 ab,·······························(3分)
2 2
2
即 S正方形DHGF DH ab . ····························································(4分)
又∵ S矩形ABCD AD DC ab,
∴ S正方形DHGF S矩形ABCD . ······························································(5分)
数学 第 3页(共 5 页)
(2)如图,线段 DE即为所求. ·····························································(8分)
5 1
(3) . ················································································(10分)2
22.(本题 13分)
解: (1)一次; …………………………………..……………………………………(1分)
1
d1= v; ……………………………………………….......……………………(3分)
5
(2)设 d2与 v的函数关系式为 d2=av2 . ……………………………….......……(4分)
∵图象经过点(100,60),
∴10000a = 60, …………………...............………………………(5分)
3
解,得 a = , …………………………………………...…………………(6分)
500
∴d2与 v
3
的函数关系式为d 22 v . . ………....…………………………….…(7分)500
∴ d d1 d2,
d 3 v2 1∴ v . …………………………………………….....………………(9分)500 5
(3)没有超速. ………………….....................……………………………………(10分)
3
理由如下:方法 1:当 v =120时,d 1202 1 120 110.4 . ……… (11分)
500 5
d 3 v2 1 v
500 5
3 50 5
(v )2
500 3 3
3
∵ >0,
500
∴当 v >0时,d随 v的增大而增大. ………………………………………(12分)
∵ 105<110.4,∴停车距离为 105m时的车速小于 120km/h,
∴小王没有超速. ………………………………………………………………(13分)
数学 第 4页(共 5 页)
方法 2:当 d =105时,0.006v2 0.2v 105 . …...........................................………(11分)
350
解,得 v1= ,v2= -150(不符合题意,舍去),…...................................…(12分)
3
350
∵ <120,
3
∴小王没有超速.…………………………………………………………………(13分)
23.(本题 13分)
解:(1)四边形 CEGD为菱形,理由如下:··················································· (1分)
∵四边形 ABCD为矩形,
∴∠ADC=90°,
∵EF⊥AD于点 F,
∴∠AFE=90°,
∴∠AFE=∠ADC,
∴EG//CD,················································································(2分)
∵DG//CE,
∴四边形 CEGD为平行四边形.························································(3分)
∵CE=CD,
∴四边形 CEGD为菱形.·································································(4分)
(2)①MN=EE′,理由如下:··································································· (5分)
由平移可知:E′G′//EG,EE′=DD′,···················································(6分)
∴∠AHE′=∠AFE,
由(1)得∠AFE=90°,∴∠AHE′=90°,
∴∠DHE′=180°-∠AHE′=90°,
∴∠HE′N+∠HNE′=90°,∠HE′D+∠HDE′=90°.
由翻折可知:∠HE′N=∠HE′D,E′M=E′D′,········································(7分)
∴∠HNE′=∠HDE′,
∴NE′=DE’.···················································································(8分)
∴E′M -NE′=E′D′-DE′,即 MN =DD′.
∴MN=EE′.··················································································· (9分)
144 112
② 或 .
25 25 ···········································································(13分)
数学 第 5页(共 5 页)
同课章节目录