实际问题与一元一次方程 ——方案选择问题 教学设计 人教版数学七年级上册

文档属性

名称 实际问题与一元一次方程 ——方案选择问题 教学设计 人教版数学七年级上册
格式 docx
文件大小 22.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2025-05-08 19:57:42

图片预览

文档简介

专题复习:一元一次方程的应用——方案选择问题
教学任务分析
教 学 目 标 知识与技能 经历探索方案优选问题的数量关系,能列出一元一次方程解决生活中的方案选择问题。
过程与方法 经历探索方案选择问题中关键点的过程,进一步体会方程是解决实际问题的数学模型。
情感态度 与价值观 1.体会分类思想和方程思想,增强应用意识和应用能力。 2.感受合作的重要性,体会数学在生活中的重要性。
重点 利用方程模型解决实际问题。
难点 如何建立方程模型找出方案选择类问题的关键点。
教法 引导发现,启发探究。
学法 合作探究,归纳讨论法。
教学准备 多媒体课件
教学设计说明
本节课是在学生已复习了一元一次方程和一元一次方程应用的基础上,通过专题复习----方案选择问题,让学生运用方程解决实际问题的能力有所提升。 整个学习过程的设置,充分以学生已有的生活经验和数学经验为前提,以培养学生利用方程解决问题为目标,以新课程标准为指导思想。 在活动一中,以身边的实例----老师买冰箱的困惑,引入新课,激发学生的学习兴趣。活动二中先引导学生由小学算术方法解决问题,后利用方程建模的思想解决问题。其实,最优化选择问题更适合用不等式或线性方程来解决。放在此处,一是培养学生利用方程解决实际问题的能力;另外,也为一元一次不等式和一元一次函数的学习打下基础。活动三在活动二的基础上,归纳总结解决方案选择问题的一般思路,培养学生利用方程建模思想解决问题的思维习惯。活动四的设置,是在学生探究归纳得出方案优选问题解决思路的基础上,利用稍微有深度的习题,让学生学以致用,便于更深入地掌握知识。活动五及活动七中,分别设置编题和调研两个问题,培养学生应用数学的能力,让学生深切体会到数学来源于生活,又应用于生活。活动六中的总结反思,注重引导学生梳理本节课的知识脉络同时让学生掌握浅显的数学方法和培养学生的数学思维。
教学过程设计
问题与情境 师生行为 设计意图
活动1:【复习引入】 1. 回顾一元一次方程解决实际问题的一般步骤。 2. 最近老师准备选购一台冰箱,现有两种型号相似的冰箱,一种价格便宜但耗电,另一种价格高但省电,出于省钱原则,该选哪种型号的冰箱呢 3.生活中,你们遇到过这种需要根据最优方案作出决策判断的问题吗 学生回顾回答。 教师提出问题,学生思考。 学生回忆,口答。 巩固知识点,为进一步学习起到基石的作用。 利用贴近生活的实际问题引入话题,激发学生的探究欲望。 让学生有效地把自己投入到对问题的探究中去,既能引起学生的学习兴趣,也为后面的编写实际问题作好铺垫。
活动2【解决问题】 类型一:通话上网中的方案选择 我市上网有两种收费方式,用户可以任选其一:A计时制:1元/小时,B包月制:80元/月,此外,每一种上网方式都加收通讯费0.1元/小时. 问题1:某用户每月上网40小时,选哪种方式比较合算? 问题2:某用户每月上网110小时,选哪种方式比较合算? 教师提出问题,先让学生猜测,判断。 后让学生陈述理由。 教师关注:学生能否由两种计费方式的特点作出初步的判断。 培养学生的估算能力。 让学生初步感知解决方案选择问题需要进行分类考虑。
问题3: 请你设计一个方案,使用户能合理地选择上网方式。 学生分组交流讨论,从而得到合理方案。后教师请学生代表回答。 在学生与他人交流的过程中,获得解决问题的方法,同时也表达了自己的想法,既训练了学生的表达能力,也增强了合作交流信心。培养学生在数学活动中会思考、会表达的能力。 让学生体验数学知识从猜想到验证再得到结论的全过程。
活动3【总结归纳】 解方案选择问题的一般方法。 学生小组内交流,讨论。 教师深入小组中适时点拨,同时要有耐心地倾听。因为这是解决问题的关键。 通过对该类问题的概括,总结,从而能更深入地理解探究方案选择问题的一般思路。
问题与情境 师生行为 设计意图
活动4【综合运用】 类型二:生产运输中的方案选择 奇瑞公司要把新研发生产的一批瑞虎7从芜湖运往全国各地的奇瑞4S店销售。若通过铁路运输,则每千米需运费20元,还需装卸费3200元及手续费800元;若通过公路运输,则每千米需运费30元,还需手续费400元(由公司员工 装卸,不需装卸费)。 (1)已知芜湖到上海的距离约为350千米,则公司将选择哪种运输方式可节省总费用? (2)在什么情况下,通过铁路运输可以节省总费用? 类型三:销售购物中的方案选择 商场出售的A型冰箱每台的售价是2190元,每日的耗电量为1千瓦 时,而B型冰箱每台的售价是2409元,但每日的耗电量却为0.55千瓦 时,现商场为了促销,将A型冰箱打八折出售.已知两种冰箱的使用寿命一样,请你帮老师选择:应该购买哪种型号的冰箱更划算 [总费用=购买冰箱的费用+使用冰箱所需的电费,1年按365天计算,电价为0.4元/(千瓦 时)]          学生独立解决问题(1)。 学生分组讨论解决问题(2),后教师展示小组解决问题的答案。 在此,教师应重点关注:1.关键点的选择。 2.关键点选择基础上,优选方案如何确定。 3.学生的解题过程的完整性。 教师出示引言中的问题。 学生独立思考,并解决。教师巡视,对有困难的学生进行指导。 后教师展示学生的解答过程。 由于此问题有一定的难度,教师要深入小组,指导学生如何建构方程模型,如何找关键点。 将生活中的实例引入数学中,增强学生民族自豪感,同时也能激发学生的探究热情。 学以致用,在师生归纳的基础上,实战训练,有助于掌握如何解决方案问题。 设置有一定深度的问题,让学生透彻理解、掌握方案选择问题的解决方法,同时也为后续的学习(一元一次不等式和一次函数)打下基础。
活动5【共同进步】 四人一组合作编写一道关于方案选择的问题,然后解答。 学生小组合作完成,教师参与到小组中进行适当的引导和点拨.借助展示台展示学生所编写的问题。 通过编写问题,借助建构方程,及时解决学生生活中的问题,让学生进一步体会,数学来源于生活而又服务于生活。
问题与情境 师生行为 设计意图
活动6【总结反思】 通过本堂课的学习,你有哪些收获?还有什么疑惑吗?说出来,和同伴交流交流。 学生回答,相互补充完善后教师予以评价。 培养学生归纳和语言表达的能力,鼓励学生从数学知识,数学方法和数学情感等方面谈谈收获和体验。
活动7【布置作业】 1.甲乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案;在甲商场累计购物超过1000元后,超出1000元的部分按九折收费;在乙商场累计购物超过500元后,超出500元的部分按九五折收费,设小明在同一商场累计购物x元,其中X>1000。小明应选择哪家商场更划算? 2.作一组调查,看看自己家里所使用各类灯泡价格和使用寿命,进而替妈妈设计家里最省钱的用灯方案。 将本节课的知识延伸到课外,在应用方程建模思想解决问题的同时,提高学生应用数学的能力,让学生感觉到数学在人们生活中的作用,进而对数学产生更大的兴趣。
【结束语】 给我最大快乐的, 不是已懂得知识,而是不断的学习; 不是已有的东西,而是不断的获取; 不是已达到的高度,而是继续不断的攀登。 ----高斯 师生共勉
板书设计
课题:一元一次方程的应用----方案选择问题 解:设用户上网X小时,两种方式收费一样多。        则(1+0.1)x=80+0.1x。            审 设 列 解 检 答 解得x=80    分类→计算→比较→选择 答:…………  
同课章节目录